Faulting, Fracturing and Igneous Intrusion in the Earth's Crust


Book Description

Geologists have long grappled with understanding the mechanical origins of rock deformation. Stress regimes control the nucleation, growth and reactivation of faults and fractures; induce seismic activity; affect the transport of magma; and modulate structural permeability, thereby influencing the redistribution of hydrothermal and hydrocarbon fluids. Experimentalists endeavour to recreate deformation structures observed in nature under controlled stress conditions. Earth scientists studying earthquakes will attempt to monitor or deduce stress changes in the Earth as it actively deforms. All are building upon the pioneering research and concepts of Ernest Masson Anderson, dating back to the start of the twentieth century. This volume celebrates Anderson's legacy, with 14 original research papers that examine faulting and seismic hazard; structural inheritance; the role of local and regional stress fields; low angle faults and the role of pore fluids; supplemented by reviews of Andersonian approaches and a reprint of his classic paper of 1905--




Physical Geology


Book Description

This is a discount Black and white version. Some images may be unclear, please see BCCampus website for the digital version.This book was born out of a 2014 meeting of earth science educators representing most of the universities and colleges in British Columbia, and nurtured by a widely shared frustration that many students are not thriving in courses because textbooks have become too expensive for them to buy. But the real inspiration comes from a fascination for the spectacular geology of western Canada and the many decades that the author spent exploring this region along with colleagues, students, family, and friends. My goal has been to provide an accessible and comprehensive guide to the important topics of geology, richly illustrated with examples from western Canada. Although this text is intended to complement a typical first-year course in physical geology, its contents could be applied to numerous other related courses.




New Challenges in Rock Mechanics and Rock Engineering


Book Description

New Challenges in Rock Mechanics and Rock Engineering includes the contributions presented at the ISRM European Rock Mechanics Symposium Eurock 2024 (Alicante, Spain, 15-19 July 2024), and explores cutting-edge advancements in rock mechanics and rock engineering. This comprehensive compilation covers various aspects of rock mechanics and rock engineering, including: rock properties, testing methods, infrastructure and mining rock mechanics, design analysis, stone heritage preservation, geophysics, numerical modeling, monitoring techniques, underground excavation support, risk assessment, and the application of EUROCODE-7 in rock engineering. Furthermore, it addresses areas like geomechanics for the oil and gas industry, applications of artificial intelligence, remote sensing methodologies and geothermal technology. New Challenges in Rock Mechanics and Rock Engineering covers the latest breakthroughs and tackles the new challenges in rock mechanics and rock engineering, is aimed at scientists and professionals in these fields, and serves as an essential resource for keeping up to date with industry trends and solutions.




Rock Fractures and Fluid Flow


Book Description

Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.




Rock Deformation from Field, Experiments and Theory


Book Description

Ernie Rutter has made, and continues to make, a significant impact in the field of rock deformation. He has studied brittle and plastic deformation processes that occur within both the oceanic and continental crust, as well as other key properties such as the permeability and seismic velocities of these rocks. His approach has been one that integrates field observations, laboratory experiments and theoretical analyses. This volume celebrates Ernie's key contribution to rock deformation and structural geology by bringing together a collection of papers that represent this broad approach. The papers within the volume address key issues that remain within these fields. These range from fundamental studies of brittle and plastic behaviour along with the resultant structures and microstructures from both the field and laboratory, to applied problems where a better understanding of the deformation and properties of the crust is still needed.




Earth Science for Civil and Environmental Engineers


Book Description

Introduces the fundamental principles of applied Earth science needed for engineering practice, with case studies, exercises, and online solutions.




Encyclopedia of Environmental Change


Book Description

Accessibly written by a team of international authors, the Encyclopedia of Environmental Change provides a gateway to the complex facts, concepts, techniques, methodology and philosophy of environmental change. This three-volume set illustrates and examines topics within this dynamic and rapidly changing interdisciplinary field. The encyclopedia includes all of the following aspects of environmental change: Diverse evidence of environmental change, including climate change and changes on land and in the oceans Underlying natural and anthropogenic causes and mechanisms Wide-ranging local, regional and global impacts from the polar regions to the tropics Responses of geo-ecosystems and human-environmental systems in the face of past, present and future environmental change Approaches, methodologies and techniques used for reconstructing, dating, monitoring, modelling, projecting and predicting change Social, economic and political dimensions of environmental issues, environmental conservation and management and environmental policy Over 4,000 entries explore the following key themes and more: Conservation Demographic change Environmental management Environmental policy Environmental security Food security Glaciation Green Revolution Human impact on environment Industrialization Landuse change Military impacts on environment Mining and mining impacts Nuclear energy Pollution Renewable resources Solar energy Sustainability Tourism Trade Water resources Water security Wildlife conservation The comprehensive coverage of terminology includes layers of entries ranging from one-line definitions to short essays, making this an invaluable companion for any student of physical geography, environmental geography or environmental sciences.




Geology and the Pioneers of Earth Science


Book Description

Momentous changes, particularly in the 1960’s, transformed ‘geology’ into ‘earth science’. These developments and the scientists behind them have been neglected until now and are the subject of this book.




Avalanches in Functional Materials and Geophysics


Book Description

This book provides the state-of-the art of the present understanding of avalanche phenomena in both functional materials and geophysics. The main emphasis of the book is analyzing these apparently different problems within the common perspective of out-of-equilibrium phenomena displaying spatial and temporal complexity that occur in a broad range of scales. Many systems, when subjected to an external force, respond intermittently in the form of avalanches that often span over a wide range of sizes, energies and durations. This is often related to a class of critical behavior characterized by the absence of characteristic scales. Typical examples are magnetization processes, plastic deformation and failure occuring in functional materials. These phenomena share many similarities with seismicity arising from the earth crust failure due to stresses that originate from plate tectonics.




Geomechanics and Geology


Book Description

Geomechanics investigates the origin, magnitude and deformational consequences of stresses in the crust. In recent years awareness of geomechanical processes has been heightened by societal debates on fracking, human-induced seismicity, natural geohazards and safety issues with respect to petroleum exploration drilling, carbon sequestration and radioactive waste disposal. This volume explores the common ground linking geomechanics with inter alia economic and petroleum geology, structural geology, petrophysics, seismology, geotechnics, reservoir engineering and production technology. Geomechanics is a rapidly developing field that brings together a broad range of subsurface professionals seeking to use their expertise to solve current challenges in applied and fundamental geoscience. A rich diversity of case studies herein showcase applications of geomechanics to hydrocarbon exploration and field development, natural and artificial geohazards, reservoir stimulation, contemporary tectonics and subsurface fluid flow. These papers provide a representative snapshot of the exciting state of geomechanics and establish it firmly as a flourishing subdiscipline of geology that merits broadest exposure across the academic and corporate geosciences.