Advances in Time-Domain Computational Electromagnetic Methods


Book Description

Discover state-of-the-art time domain electromagnetic modeling and simulation algorithms Advances in Time-Domain Computational Electromagnetic Methods delivers a thorough exploration of recent developments in time domain computational methods for solving complex electromagnetic problems. The book discuses the main time domain computational electromagnetics techniques, including finite-difference time domain (FDTD), finite-element time domain (FETD), discontinuous Galerkin time domain (DGTD), time domain integral equation (TDIE), and other methods in electromagnetic, multiphysics modeling and simulation, and antenna designs. The book bridges the gap between academic research and real engineering applications by comprehensively surveying the full picture of current state-of-the-art time domain electromagnetic simulation techniques. Among other topics, it offers readers discussions of automatic load balancing schemes for DG DG-FETD/SETD methods and convolution quadrature time domain integral equation methods for electromagnetic scattering. Advances in Time-Domain Computational Electromagnetic Methods also includes: Introductions to cylindrical, spherical, and symplectic FDTD, as well as FDTD for metasurfaces with GSTC and FDTD for nonlinear metasurfaces Explorations of FETD for dispersive and nonlinear media and SETD-DDM for periodic/quasi-periodic arrays Discussions of TDIE, including explicit marching-on-in-time solvers for second-kind time domain integral equations, TD-SIE DDM, and convolution quadrature time domain integral equation methods for electromagnetic scattering Treatments of deep learning, including time domain electromagnetic forward and inverse modeling using a differentiable programming platform Ideal for undergraduate and graduate students studying the design and development of various kinds of communication systems, as well as professionals working in these fields, Advances in Time-Domain Computational Electromagnetic Methods is also an invaluable resource for those taking advanced graduate courses in computational electromagnetic methods and simulation techniques.







FDTD Modeling of Metamaterials: Theory and Applications


Book Description

Master powerful new modeling tools that let you quantify and represent metamaterial properties with never-before accuracy. This first-of-its-kind book brings you up to speed on breakthrough finite-difference time-domain techniques for modeling metamaterial characteristics and behaviors in electromagnetic systems. This practical resource comes complete with sample FDTD scripts to help you pave the way to new metamaterial applications and advances in antenna, microwave, and optics engineering. You get in-depth coverage of state-of-the-art FDTD modeling techniques and applications for electromagnetic bandgap (EBG) structures, left-handed metamaterials (LHMs), wire medium, metamaterials for optics, and other practical metamaterials. You find steps for computing dispersion diagrams, dealing with material dispersion properties, and verifying the left-handedness. Moreover, this comprehensive volume offers guidance for handling the unique properties possessed by metamaterials, including how to define material parameters, characterize the interface of metamaterial slabs, and quantify their spatial as well as frequency dispersion characteristics. The book also presents conformal and dispersive FDTD modeling of electromagnetic cloaks, perfect lens, and plasmonic waveguides, as well as other novel antenna, microwave, and optical applications. Over 190 illustrations support key topics throughout the book.




Time-Domain Computer Analysis of Nonlinear Hybrid Systems


Book Description

The analysis of nonlinear hybrid electromagnetic systems poses significant challenges that essentially demand reliable numerical methods. In recent years, research has shown that finite-difference time-domain (FDTD) cosimulation techniques hold great potential for future designs and analyses of electrical systems. Time-Domain Computer Analysis of Nonlinear Hybrid Systems summarizes and reviews more than 10 years of research in FDTD cosimulation. It first provides a basic overview of the electromagnetic theory, the link between field theory and circuit theory, transmission line theory, finite-difference approximation, and analog circuit simulation. The author then extends the basic theory of FDTD cosimulation to focus on techniques for time-domain field solving, analog circuit analysis, and integration of other lumped systems, such as n-port nonlinear circuits, into the field-solving scheme. The numerical cosimulation methods described in this book and proven in various applications can effectively simulate hybrid circuits that other techniques cannot. By incorporating recent, new, and previously unpublished results, this book effectively represents the state of the art in FDTD techniques. More detailed studies are needed before the methods described are fully developed, but the discussions in this book build a good foundation for their future perfection.




Mutual Coupling Between Antennas


Book Description

Mutual Coupling Between Antennas A guide to mutual coupling between various types of antennas in arrays such as wires, apertures and microstrip patches or antennas co-sited on platforms Mutual Coupling Between Antennas explores the theoretical underpinnings of mutual coupling, offers an up-to-date description of the physical effects of mutual coupling for a variety of antennas, and contains techniques for analysing and assessing its effects. The book puts the topic in historical context, presents an integral equation approach, includes the current techniques, measurement methods, and discusses the most recent advances in the field. With contributions from noted experts on the topic, the book reviews practical aspects of mutual coupling and examines applications that clearly demonstrate where the performance is impacted both positively and negatively. Mutual Coupling Between Antennas contains information on how mutual coupling can be analysed with a wide range of methods from direct computer software using discrete methods, to integral equations and Greens function methods as well as approximate asymptotic methods. This important text: Provides a theoretical background for understanding mutual coupling between various types of antennas Describes the interaction that occurs between antennas, both planned and unplanned Explores a key aspect of arrays in any wireless, radar or sensing system operating at radio frequencies Offers a groundbreaking book on antenna mutual coupling Written for antenna engineers, technical specialists, researchers and students, Mutual Coupling Between Antennas is the first book to examine mutual coupling between various types of antennas including wires, horns, microstrip patches, MIMO antennas, co-sited antennas and arrays in planar or conformal configurations.







Terahertz and Gigahertz Photonics


Book Description










Advances in Information Technologies for Electromagnetics


Book Description

This book offers a broad panorama on recently achieved and potentially obtainable advances in electromagnetics with innovative IT technologies. Simple tutorial chapters introduce cutting edge technologies. These include parallel and distributed computing, object-oriented technologies, grid computing, semantic grids, agent based computing and service-oriented architectures. The book is a unique tool bridging the gap between IT and EM communities.