European Control Conference 1995


Book Description

Proceedings of the European Control Conference 1995, Rome, Italy 5-8 September 1995




Fighter Aircraft Maneuver Limiting Using MPC: Theory and Application


Book Description

Flight control design for modern fighter aircraft is a challenging task. Aircraft are dynamical systems, which naturally contain a variety of constraints and nonlinearities such as, e.g., maximum permissible load factor, angle of attack and control surface deflections. Taking these limitations into account in the design of control systems is becoming increasingly important as the performance and complexity of the aircraft is constantly increasing. The aeronautical industry has traditionally applied feedforward, anti-windup or similar techniques and different ad hoc engineering solutions to handle constraints on the aircraft. However these approaches often rely on engineering experience and insight rather than a theoretical foundation, and can often require a tremendous amount of time to tune. In this thesis we investigate model predictive control as an alternative design tool to handle the constraints that arises in the flight control design. We derive a simple reference tracking MPC algorithm for linear systems that build on the dual mode formulation with guaranteed stability and low complexity suitable for implementation in real time safety critical systems. To reduce the computational burden of nonlinear model predictive control we propose a method to handle the nonlinear constraints, using a set of dynamically generated local inner polytopic approximations. The main benefit of the proposed method is that while computationally cheap it still can guarantee recursive feasibility and convergence. An alternative to deriving MPC algorithms with guaranteed stability properties is to analyze the closed loop stability, post design. Here we focus on deriving a tool based on Mixed Integer Linear Programming for analysis of the closed loop stability and robust stability of linear systems controlled with MPC controllers. To test the performance of model predictive control for a real world example we design and implement a standard MPC controller in the development simulator for the JAS 39 Gripen aircraft at Saab Aeronautics. This part of the thesis focuses on practical and tuning aspects of designing MPC controllers for fighter aircraft. Finally we have compared the MPC design with an alternative approach to maneuver limiting using a command governor.




Nonlinear Model Based Process Control


Book Description

The ASI on Nonlinear Model Based Process Control (August 10-20, 1997~ Antalya - Turkey) convened as a continuation of a previous ASI which was held in August 1994 in Antalya on Methods of Model Based Process Control in a more general context. In 1994, the contributions and discussions convincingly showed that industrial process control would increasingly rely on nonlinear model based control systems. Therefore, the idea for organizing this ASI was motivated by the success of the first one, the enthusiasm expressed by the scientific community for continuing contact, and the growing incentive for on-line control algorithms for nonlinear processes. This is due to tighter constraints and constantly changing performance objectives that now force the processes to be operated over a wider range of conditions compared to the past, and the fact that many of industrial operations are nonlinear in nature. The ASI intended to review in depth and in a global way the state-of-the-art in nonlinear model based control. The list of lecturers consisted of 12 eminent scientists leading the principal developments in the area, as well as industrial specialists experienced in the application of these techniques. Selected out of a large number of applications, there was a high quality, active audience composed of 59 students from 20 countries. Including family members accompanying the participants, the group formed a large body of92 persons. Out of the 71 participants, 11 were from industry.




Predictive Control for Linear and Hybrid Systems


Book Description

With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).







Nonlinear Control Systems Design 1995


Book Description

The series of IFAC Symposia on Nonlinear Control Systems provides the ideal forum for leading researchers and practitioners who work in the field to discuss and evaluate the latest research and developments. This publication contains the papers presented at the 3rd IFAC Symposium in the series which was held in Tahoe City, California, USA.




Proceedings


Book Description




Relaxed Barrier Function Based Model Predictive Control


Book Description

In this thesis, we introduce the novel concept of relaxed barrier function based model predictive control and present a comprehensive theoretical and algorithmic framework for the design, analysis, and implementation of relaxed barrier function based MPC approaches. Instead of treating the underlying optimization as an idealized static map, a key motive of the MPC results and algorithms presented in this thesis is to study the interconnected dynamics of controlled plant and iterative optimization algorithm in an integrated barrier function based framework and to analyze the resulting overall closed-loop system both from a systems theoretic and algorithmic perspective. One of the presented main results is a novel class of barrier function based anytime MPC algorithms that guarantee important properties of the closed-loop system independently of the number of optimization algorithm iterations that are performed at each sampling step. The obtained theoretical results are illustrated by various numerical examples and benchmark tests as well as by an experimental case study in which the proposed class of barrier function based MPC algorithms is applied to the predictive control of a self-driving car.







Model Predictive Control


Book Description