Handbook of Nanoscopy


Book Description

This completely revised successor to the Handbook of Microscopy supplies in-depth coverage of all imaging technologies from the optical to the electron and scanning techniques. Adopting a twofold approach, the book firstly presents the various technologies as such, before going on to cover the materials class by class, analyzing how the different imaging methods can be successfully applied. It covers the latest developments in techniques, such as in-situ TEM, 3D imaging in TEM and SEM, as well as a broad range of material types, including metals, alloys, ceramics, polymers, semiconductors, minerals, quasicrystals, amorphous solids, among others. The volumes are divided between methods and applications, making this both a reliable reference and handbook for chemists, physicists, biologists, materials scientists and engineers, as well as graduate students and their lecturers.




Nanocharacterisation


Book Description

Chemical characterisation techniques have been essential tools in underpinning the explosion in nanotechnology in recent years and nanocharacterisation is a rapidly developing field. Contributions in this book from leading teams across the globe provide an overview of the different microscopic techniques now in regular use for the characterisation of nanostructures. Essentially a handbook to all working in the field this indispensable resource provides a survey of microscopy based techniques with experimental procedures and extensive examples of state of the art characterisation methods including: Transmission Electron Microscopy, Electron Tomography, Tunneling Microscopy, Electron Holography, Electron Energy Loss Spectroscopy. This timely publication will appeal to academics, professionals and anyone working fields related to the research and development of nanocharacterisation and nanotechnology.




Magnetic Microscopy of Nanostructures


Book Description

A comprehensive collection of overview articles on novel microscopy methods for imaging magnetic structures on the nanoscale. Written by leading scientists in the field, the book covers synchrotron based methods, spin-polarized electron methods, and scanning probe techniques. It constitutes a valuable source of reference for graduate students and newcomers to the field.




Handbook of Microscopy for Nanotechnology


Book Description

Nanostructured materials take on an enormously rich variety of properties and promise exciting new advances in micromechanical, electronic, and magnetic devices as well as in molecular fabrications. The structure-composition-processing-property relationships for these sub 100 nm-sized materials can only be understood by employing an array of modern microscopy and microanalysis tools. Handbook of Microscopy for Nanotechnology aims to provide an overview of the basics and applications of various microscopy techniques for nanotechnology. This handbook highlights various key microcopic techniques and their applications in this fast-growing field. Topics to be covered include the following: scanning near field optical microscopy, confocal optical microscopy, atomic force microscopy, magnetic force microscopy, scanning turning microscopy, high-resolution scanning electron microscopy, orientational imaging microscopy, high-resolution transmission electron microscopy, scanning transmission electron microscopy, environmental transmission electron microscopy, quantitative electron diffraction, Lorentz microscopy, electron holography, 3-D transmission electron microscopy, high-spatial resolution quantitative microanalysis, electron-energy-loss spectroscopy and spectral imaging, focused ion beam, secondary ion microscopy, and field ion microscopy.




History of California: 1542-1800


Book Description

This work examines California's history from 1520 to 1890. It also contains a ethnology of the state's population, economics, and politics.




Handbook On Big Data And Machine Learning In The Physical Sciences (In 2 Volumes)


Book Description

This compendium provides a comprehensive collection of the emergent applications of big data, machine learning, and artificial intelligence technologies to present day physical sciences ranging from materials theory and imaging to predictive synthesis and automated research. This area of research is among the most rapidly developing in the last several years in areas spanning materials science, chemistry, and condensed matter physics.Written by world renowned researchers, the compilation of two authoritative volumes provides a distinct summary of the modern advances in instrument — driven data generation and analytics, establishing the links between the big data and predictive theories, and outlining the emerging field of data and physics-driven predictive and autonomous systems.




Fresh from the Farm 6pk


Book Description




Bioinformatics and Genomes


Book Description

A plethora of bioinformatics tools are available for exploiting the rapidly growing genomic, proteomic and structural data and the related databases. However, many researchers are unaware of these tools because they were published in a journal of narrow distribution or because they were described in technical language unfamiliar to the life scientist. In this book, leading bioinformaticists critically review the latest developments in their fields of expertise. Each chapter provides a clear explanation of the use, purpose and future potential of the tools for a given application. Topics include the use of multiple alignment methods, analysis of expression data, structural genomics, and protein structure prediction.




Microscopy of Semiconducting Materials 2007


Book Description

This volume contains invited and contributed papers presented at the conference on ‘Microscopy of Semiconducting Materials’ held at the University of Cambridge on 2-5 April 2007. The event was organised under the auspices of the Electron Microscopy and Analysis Group of the Institute of Physics, the Royal Microscopical Society and the Materials Research Society. This international conference was the fifteenth in the series that focuses on the most recent world-wide advances in semiconductor studies carried out by all forms of microscopy and it attracted delegates from more than 20 countries. With the relentless evolution of advanced electronic devices into ever smaller nanoscale structures, the problem relating to the means by which device features can be visualised on this scale becomes more acute. This applies not only to the imaging of the general form of layers that may be present but also to the determination of composition and doping variations that are employed. In view of this scenario, the vital importance of transmission and scanning electron microscopy, together with X-ray and scanning probe approaches can immediately be seen. The conference featured developments in high resolution microscopy and nanoanalysis, including the exploitation of recently introduced aberration-corrected electron microscopes. All associated imaging and analytical techniques were demonstrated in studies including those of self-organised and quantum domain structures. Many analytical techniques based upon scanning probe microscopies were also much in evidence, together with more general applications of X-ray diffraction methods.




Field Emission Scanning Electron Microscopy


Book Description

This book highlights what is now achievable in terms of materials characterization with the new generation of cold-field emission scanning electron microscopes applied to real materials at high spatial resolution. It discusses advanced scanning electron microscopes/scanning- transmission electron microscopes (SEM/STEM), simulation and post-processing techniques at high spatial resolution in the fields of nanomaterials, metallurgy, geology, and more. These microscopes now offer improved performance at very low landing voltage and high -beam probe current stability, combined with a routine transmission mode capability that can compete with the (scanning-) transmission electron microscopes (STEM/-TEM) historically run at higher beam accelerating voltage