Femtosecond Laser Micromachining


Book Description

Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.




Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications


Book Description

Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensional microfluidics, micromechanics, microelectronics and microoptics embedded in the glass. Further, these microcomponents can be easily integrated in a single glass microchip by the simple procedure using the femtosecond laser. Thus, the femtosecond laser processing provides some advantages over conventional methods such as traditional semiconductor processing or soft lithography for fabrication of microfluidic, optofludic and lab-on-a-chip devices and thereby many researches on this topic are currently being carried out. This book presents a comprehensive review on the state of the art and future prospects of femtosecond laser processing for fabrication of microfluidics and optofludics including principle of femtosecond laser processing, detailed fabrication procedures of each microcomponent and practical applications to biochemical analysis.




AMST'05 Advanced Manufacturing Systems and Technology


Book Description

Manufacturing a product is not difficult, the difficulty consists in manufacturing a product of high quality, at a low cost and rapidly. Drastic technological advances are changing global markets very rapidly. In such conditions the ability to compete successfully must be based on innovative ideas and new products which has to be of high quality yet low in price. One way to achieve these objecti ves would be through massive investments in research of computer based technology and by applying the approaches presented in this book. The First International Conference on Advanced Manufacturing Systems and Technology AMST87 was held in Opatija (Croatia) in October 1987. The Second International Conference on Advanced Manufacturing Systems and Technology AMSV90 was held in Trento (Italy) in lune 1990. The Third, Fourth, Fifth and Sixth Conferences on Advanced Manufacturing Systems and Technology were all held in Udine (Italy) as follows: AMST93 in April 1993, AMST96 in September 1996, AMST99 in June 1999 and AMST02 in June 2002.




Laser Material Processing


Book Description

New chapters on bending and cleaning reflect the changes in the field since the last edition, completing the range of practical knowledge about the processes possible with lasers already familiar to users of this well-known text. Professor Steen's lively presentation is supported by a number of original cartoons by Patrick Wright and Noel Ford, which will bring a smile to your face and ease the learning process. From the reviews: "...well organized, and the text is very practical...The engineering community will find this book informative and useful." (OPTICS AND PHOTONICS NEWS, July/August 2005)




Advances in Laser Materials Processing


Book Description

Advances in Laser Materials Processing: Technology, Research and Application, Second Edition, provides a revised, updated and expanded overview of the area, covering fundamental theory, technology and methods, traditional and emerging applications and potential future directions. The book begins with an overview of the technology and challenges to applying the technology in manufacturing. Parts Two thru Seven focus on essential techniques and process, including cutting, welding, annealing, hardening and peening, surface treatments, coating and materials deposition. The final part of the book considers the mathematical modeling and control of laser processes. Throughout, chapters review the scientific theory underpinning applications, offer full appraisals of the processes described and review potential future trends. - A comprehensive practitioner guide and reference work explaining state-of-the-art laser processing technologies in manufacturing and other disciplines - Explores challenges, potential, and future directions through the continuous development of new, application-specific lasers in materials processing - Provides revised, expanded and updated coverage




Micromachining


Book Description

To present their work in the field of micromachining, researchers from distant parts of the world have joined their efforts and contributed their ideas according to their interest and engagement. Their articles will give you the opportunity to understand the concepts of micromachining of advanced materials. Surface texturing using pico- and femto-second laser micromachining is presented, as well as the silicon-based micromachining process for flexible electronics. You can learn about the CMOS compatible wet bulk micromachining process for MEMS applications and the physical process and plasma parameters in a radio frequency hybrid plasma system for thin-film production with ion assistance. Last but not least, study on the specific coefficient in the micromachining process and multiscale simulation of influence of surface defects on nanoindentation using quasi-continuum method provides us with an insight in modelling and the simulation of micromachining processes. The editors hope that this book will allow both professionals and readers not involved in the immediate field to understand and enjoy the topic.




Advanced Manufacturing and Processing Technology


Book Description

This book disseminates recent research, theories, and practices relevant to the areas of surface engineering and the processing of materials for functional applications in the aerospace, automobile, and biomedical industries. The book focuses on the hidden technologies and advanced manufacturing methods that may not be standardized by research institutions but are greatly beneficial to material and manufacturing industrial engineers in many ways. It details projects, research activities, and innovations in a global platform to strengthen the knowledge of the concerned community. The book covers surface engineering including coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies to enhance the performance of materials in terms of corrosion, wear, and fatigue. The book captures the emerging areas of materials science and advanced manufacturing engineering and presents recent trends in research for researchers, field engineers, and academic professionals.




Comprehensive Materials Processing


Book Description

Comprehensive Materials Processing, Thirteen Volume Set provides students and professionals with a one-stop resource consolidating and enhancing the literature of the materials processing and manufacturing universe. It provides authoritative analysis of all processes, technologies, and techniques for converting industrial materials from a raw state into finished parts or products. Assisting scientists and engineers in the selection, design, and use of materials, whether in the lab or in industry, it matches the adaptive complexity of emergent materials and processing technologies. Extensive traditional article-level academic discussion of core theories and applications is supplemented by applied case studies and advanced multimedia features. Coverage encompasses the general categories of solidification, powder, deposition, and deformation processing, and includes discussion on plant and tool design, analysis and characterization of processing techniques, high-temperatures studies, and the influence of process scale on component characteristics and behavior. Authored and reviewed by world-class academic and industrial specialists in each subject field Practical tools such as integrated case studies, user-defined process schemata, and multimedia modeling and functionality Maximizes research efficiency by collating the most important and established information in one place with integrated applets linking to relevant outside sources




Handbook of Silicon Based MEMS Materials and Technologies


Book Description

Handbook of Silicon Based MEMS Materials and Technologies, Third Edition is a comprehensive guide to MEMS materials, technologies, and manufacturing with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, modeling, manufacturing, processing, system integration, measurement, and materials characterization techniques of MEMS structures. The third edition of this book provides an important up-to-date overview of the current and emerging technologies in MEMS making it a key reference for MEMS professionals, engineers, and researchers alike, and at the same time an essential education material for undergraduate and graduate students. - Provides comprehensive overview of leading-edge MEMS manufacturing technologies through the supply chain from silicon ingot growth to device fabrication and integration with sensor/actuator controlling circuits - Explains the properties, manufacturing, processing, measuring and modeling methods of MEMS structures - Reviews the current and future options for hermetic encapsulation and introduces how to utilize wafer level packaging and 3D integration technologies for package cost reduction and performance improvements - Geared towards practical applications presenting several modern MEMS devices including inertial sensors, microphones, pressure sensors and micromirrors




Micro Electro-fabrication


Book Description

Micro Electro-fabrication outlines three major nanoscale electro-fabrication techniques, including electro-discharge machining, electrochemical machining and electrochemical deposition. Applications covered include the fabrication of nozzles for automobiles, miniature hole machining for aerospace turbine blade cooling, biomedical device fabrication, such as stents, the fabrication of microchannels for microfluidic application, the production of various MEMS devices, rapid prototyping of micro components, and nanoelectrode fabrication for scanning electron microscopy. This comprehensive book discusses the fundamental nature of the various electro-fabrication processes as well as mathematical modelling and applications. It is an important reference for materials scientists and engineers working at the nanoscale. Provides state-of-the-art research investigations on various topics of micro/nano EDM, micro LECD, micro/nano ECM and ECDM techniques Compares a variety of electro-fabrication techniques, outlining which is best in different situations Outlines a variety of modeling and optimization techniques relating to micro/nano EDM, micro LECD, micro/nano ECM and ECDM