Corrosion of Austenitic Stainless Steels


Book Description

This comprehensive study covers all types of corrosion of austenitic stainless steel. It also covers methods for detecting corrosion and investigating corrosion-related failure, together with guidelines for improving corrosion protection of steels. Details all types of corrosion of austenitic stainless steel Covers methods for detecting corrosion and investigating corrosion-related failure Outlines guidelines for improving corrosion protection of steels




Welding Metallurgy


Book Description

Updated to include new technological advancements in welding Uses illustrations and diagrams to explain metallurgical phenomena Features exercises and examples An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.







Welding Metallurgy of Stainless Steels


Book Description

When considering the operational performance of stainless steel weldments the most important points to consider are corrosion resistance, weld metal mechanical properties and the integrity ofthe weldedjoint. Mechanical and corrosion resistance properties are greatly influenced by the metallurgical processes that occur during welding or during heat treatment of welded components. This book is aimed, there fore, at providing information on the metallurgical problems that may be encountered during stainless steel welding. In this way we aim to help overcome a certain degree of insecurity that is often encountered in welding shops engaged in the welding of stainless steels and is often the cause of welding problems which may in some instances lead to the premature failure of the welded component. The metallurgical processes that occur during the welding of stainless steel are of a highly intricate nature. The present book focuses in particular on the signif icance of constitution diagrams, on the processes occurring during the solidification of weld metal and on the recrystallization and precipitation phenomena which take place in the area of the welds. There are specific chapters covering the hot cracking resistance during welding and the practical welding of a number of different stainless steel grades. In addition, recommendations are given as to the most suitable procedures to be followed in order to obtain maximum corrosion resistance and mechanical properties from the weldments.




WELDING METALLURGY AND WELDABILITY OF STAINLESS STEELS


Book Description

Market_Desc: · Professional engineers, technicians, scientists, etc. working in industries where stainless steels are used for construction. This includes the power generation, energy, petrochemical, dairy, medical, electronic, defense, and construction industries.· Advanced undergraduate and graduate level students. Special Features: · Emphasizes solid fundamental underpinnings of the metallurgical principles that govern microstructure evolution and property develpment in welded stainless steels.· Presents many practical examples that demonstrate the application of fundamental metallurgical principles.· Greatly expands and updates what is currently available in other texts and handbooks in the subject matter. About The Book: This book describes the fundamental metallurgical principles that control microstructure and properties of welded stainless steels. It also serves as a practical how to guide that will allow engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to insure that failures are avoided during fabrication and service. This book provides state of the art information on the topic and greatly expands and update what is currently available in other texts and handbooks.




Welding Metallurgy and Weldability


Book Description

Describes the weldability aspects of structural materials used in a wide variety of engineering structures, including steels, stainless steels, Ni-base alloys, and Al-base alloys Welding Metallurgy and Weldability describes weld failure mechanisms associated with either fabrication or service, and failure mechanisms related to microstructure of the weldment. Weldability issues are divided into fabrication and service related failures; early chapters address hot cracking, warm (solid-state) cracking, and cold cracking that occur during initial fabrication, or repair. Guidance on failure analysis is also provided, along with examples of SEM fractography that will aid in determining failure mechanisms. Welding Metallurgy and Weldability examines a number of weldability testing techniques that can be used to quantify susceptibility to various forms of weld cracking. Describes the mechanisms of weldability along with methods to improve weldability Includes an introduction to weldability testing and techniques, including strain-to-fracture and Varestraint tests Chapters are illustrated with practical examples based on 30 plus years of experience in the field Illustrating the weldability aspects of structural materials used in a wide variety of engineering structures, Welding Metallurgy and Weldability provides engineers and students with the information needed to understand the basic concepts of welding metallurgy and to interpret the failures in welded components.




Stainless Steels


Book Description

ASM Specialty Handbook® Stainless Steels The best single-volume reference on the metallurgy, selection, processing, performance, and evaluation of stainless steels, incorporating essential information culled from across the ASM Handbook series. Includes additional data and reference information carefully selected and adapted from other authoritative ASM sources.







Metallurgy of Welding


Book Description

This book is intended, like its predecessor (The metallurgy of welding, brazing and soldering), to provide a textbook for undergraduate and postgraduate students concerned with welding, and for candidates taking the Welding Institute examinations. At the same time, it may prove useful to practising engineers, metallurgists and welding engineers in that it offers a resume of information on welding metallurgy together with some material on the engineering problems associated with welding such as reliability and risk analysis. In certain areas there have been developments that necessitated complete re-writing of the previous text. Thanks to the author's colleagues in Study Group 212 of the International Institute of Welding, understanding of mass flow in fusion welding has been radically transformed. Knowledge of the metallurgy of carbon and ferritic alloy steel, as applied to welding, has continued to advance at a rapid pace, while the literature on fracture mechanics accumulates at an even greater rate. In other areas, the welding of non-ferrous metals for example, there is little change to report over the last decade, and the original text of the book is only slightly modified. In those fields where there has been significant advance, the subject has become more quantitative and the standard of math ematics required for a proper understanding has been raised.