Fiber-Optic Transmission Networks


Book Description

Next generation optical communication systems will have to transport a significantly increased data volume at a reduced cost per transmitted bit. To achieve these ambitious goals optimum design is crucial in combination with dynamic adaptation to actual traffic demands and improved energy efficiency. In the first part of the book the author elaborates on the design of optical transmission systems. Several methods for efficient numerical simulation are presented ranging from meta-model based optimization to parallelization techniques for solving the nonlinear Schrödinger equation. Furthermore, fast analytical and semi-analytical models are described to estimate the various degradation effects occurring on the transmission line. In the second part of the book operational aspects of optical networks are investigated. Physical layer impairment-aware routing and regenerator placement are studied. Finally, it is analyzed how the energy efficiency of a multi-layer optical core network can be increased by dynamic adaptation to traffic patterns changing in the course of the day.




Planning Fiber Optics Networks


Book Description

Plan and implement fiber optic networks Effectively design and deploy bandwidth-rich networks for major types of data traffic. Covering both short-reach and long-haul networks, Planning Fiber Optic Networks provides full details on all major fiber optic parameters and includes appropriate background theory and design calculations. You will find guidelines for optimizing SONET/SDH and Ethernet networks, setting up network topologies, minimizing signal loss and impairments, and using dark fiber. Real-world examples are included throughout this practical guide. Understand signal propagation in a single-mode fiber Plan an optical loss budget Maintain an acceptable optical signal-to-noise ratio (OSNR) Learn about the effects of chromatic dispersion (CD) and polarization mode dispersion (PMD) Expand fiber capacity using wavelength division multiplexing (WDM) Reduce fiber nonlinear impairments Perform fiber characterization to ensure optimal quality and performance Test Ethernet and SONET/SDH networks Plan point-to-point and ring fiber topologies Lease or purchase dark fiber




Introduction to Fiber-Optic Communications


Book Description

Introduction to Fiber-Optic Communications provides students with the most up-to-date, comprehensive coverage of modern optical fiber communications and applications, striking a fine balance between theory and practice that avoids excessive mathematics and derivations. Unlike other textbooks currently available, this book covers all of the important recent technologies and developments in the field, including electro-optic modulators, coherent optical systems, and silicon integrated photonic circuits. Filled with practical, relevant worked examples and exercise problems, the book presents complete coverage of the topics that optical and communications engineering students need to be successful. From principles of optical and optoelectronic components, to optical transmission system design, and from conventional optical fiber links, to more useful optical communication systems with advanced modulation formats and high-speed DSP, this book covers the necessities on the topic, even including today's important application areas of passive optical networks, datacenters and optical interconnections. Covers fiber-optic communication system fundamentals, design rules and terminologies Provides students with an understanding of the physical principles and characteristics of passive and active fiber-optic components Teaches students how to perform fiber-optic system design, performance evaluation and troubleshooting Includes modern advances in modulation and decoding strategies




Fiber Optic Communications


Book Description

Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpretations and real-world analogies are provided to help students grasp the fundamental concepts. Key Features: Lucid explanation of key topics such as fibers, lasers, and photodetectors. Includes recent developments such as coherent communication and digital signal processing. Comprehensive treatment of fiber nonlinear transmission. Worked examples, exercises, and answers. Accompanying website with PowerPoint slides and numerical experiments in MATLAB. Intended primarily for senior undergraduates and graduates studying fiber-optic communications, the book is also suitable as a professional resource for researchers working in the field of fiber-optic communications.




Fiber Optic Communications


Book Description

This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and cloud computing. Since users expect these services to always be available, careful engineering is required in all technologies ranging from component development to network operations. To achieve this understanding, this book first presents a comprehensive treatment of various optical fiber structures and diverse photonic components used in optical fiber networks. Following this discussion are the fundamental design principles of digital and analog optical fiber transmission links. The concluding chapters present the architectures and performance characteristics of optical networks.




Handbook of Fiber Optic Data Communication


Book Description

The Handbook includes chapters on all the major industry standards, quick reference tables, helpful appendices, plus a new glossary and list of acronyms. This practical handbook can stand alone or as a companion volume to DeCusatis: Fiber Optic Data Communication: Technological Advances and Trends (February 2002, ISBN: 0-12-207892-6), which was developed in tandem with this book. * Includes emerging technologies such as Infiniband, 10 Gigabit Ethernet, and MPLS Optical Switching* Describes leading edge commercial products, including LEAF and MetroCore fibers, dense wavelength multiplexing, and Small Form Factor transceiver packages* Covers all major industry standards, often written by the same people who designed the standards themselves* Includes an expanded listing of references on the World Wide Web, plus hard-to-find references for international, homologation, and type approval requirements* Convenient tables of key optical datacom parameters and glossary with hundreds of definitions and acronyms* Industry buzzwords explained, including SAN, NAS, and MAN networking* Datacom market analysis and future projections from industry leading forecasters







Optical Network Design and Implementation


Book Description

bull; Master advanced optical network design and management strategies bull; Learn from real-world case-studies that feature the Cisco Systems ONS product line bull; A must-have reference for any IT professional involved in Optical networks




Fibre Optic Communication Devices


Book Description

Optoelectronic devices and fibre optics are the basis of cutting-edge communication systems. This monograph deals with the various components of these systems, including lasers, amplifiers, modulators, converters, filters, sensors, and more.




Fiber Optics Engineering


Book Description

Within the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and our ways of life. In particular, fiber optics has been playing an increasingly crucial role within the telecommunication revolution. Not only most long-distance links are fiber based, but optical fibers are increasingly approaching the individual end users, providing wide bandwidth links to support all kinds of data-intensive applications such as video, voice, and data services. As an engineering discipline, fiber optics is both fascinating and challenging. Fiber optics is an area that incorporates elements from a wide range of techno- gies including optics, microelectronics, quantum electronics, semiconductors, and networking. As a result of rapid changes in almost all of these areas, fiber optics is a fast evolving field. Therefore, the need for up-to-date texts that address this growing field from an interdisciplinary perspective persists. This book presents an overview of fiber optics from a practical, engineering perspective. Therefore, in addition to topics such as lasers, detectors, and optical fibers, several topics related to electronic circuits that generate, detect, and process the optical signals are covered. In other words, this book attempts to present fiber optics not so much in terms of a field of “optics” but more from the perspective of an engineering field within “optoelectronics.