Field-Scale Spatial Distribution and Genotypic Diversity of Sclerotinia Sclerotiorum in Soybeans


Book Description

White mold (WM) in soybeans, caused by Sclerotinia sclerotium (S.s.), is the second most devastating disease of soybeans in the world. The disease causes an average of 2.5% yield loss in soybean production annually in Pennsylvania (PA), which equates to approximately $6,000,000. However, many growers still do not scout for white mold or have not been able to manage it well. My thesis aims to increase our understanding of the biology of S.s. at the field-scale, which will improve sampling strategies, crop loss estimations, and field experimental designs. Studying the genotypic diversity of S.s. populations at a field scale will help to improve management strategies like fungicide applications. The first objective of my thesis was to determine the spatial distribution of WM disease incidence and of S.s. sclerotia in the soil. My second objective was to determine if there was evidence of clonality in field-scale populations of S.s. Third, we determined if the state-scale Pennsylvania population of S.s. was clonal and compared that population to New York and Minas Gerais, Brazilian populations. Fourth, we validated the Sporecaster mobile application for use by soybean growers to forecast WM risk in the Northeast United States. Eight fields were selected for soil sampling of thirty-five quadrats. S.s. sclerotia were manually removed and isolated in the lab. DNA was extracted for 286 isolates and genotyped by fragment analysis. Microsatellite regions of the DNA were amplified at 10 loci and PCR products were analyzed by capillary electrophoresis. The same fields were also scouted to quantify the disease incidence in each quadrat. Lastly, soybean fields in PA and New York were monitored and scouted to conduct a validation of the Sporecaster mobile application for forecasting white mold risk. Across both years, the maximum number of sclerotia in a field was 3.3 sclerotia/kg soil and the maximum disease incidence for a field was 14% due to warmer and drier weather conditions at most locations. The spatial distribution of the pathogen at a field-scale was randomly distributed and only one field showed aggregation. Genotypic results indicated 83 multilocus genotypes were present across PA. Despite a high genotypic diversity, populations at a field scale were clonal and showed little evidence of outcrossing. The Sporecaster mobile application had a two-year average accuracy of 57-74% at predicting white mold disease incidence. Our increased knowledge of the pathogen and the use of the Sporecaster app will help to improve management recommendations and guide future research of white mold management tactics.




Trichoderma


Book Description

Trichoderma is a genus of fungi that are present in all soils, where they are the most prevalent culturable fungi. They are also the most successful biofungicides used in today's agriculture. These green-colored fungi are well known for their antifungal and plant-growth-stimulating effects. This book provides comprehensive information on Trichoderma and its use in medical, agricultural and industrial applications. Section I focuses mainly on identification of Trichoderma species, and Section II is concerned with Trichoderma as a biological control agent. Chapters in these sections cover topics ranging from taxonomic status and biodiversity to biochemical analysis and bio-control application.




Lettuce Drop


Book Description







Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools


Book Description

The basic concept of this book is to examine the use of innovative methods augmenting traditional plant breeding towards the development of new crop varieties under different environmental conditions to achieve sustainable food production. This book consists of two volumes: Volume 1 subtitled Breeding, Biotechnology and Molecular Tools and Volume 2 subtitled Agronomic, Abiotic and Biotic Stress Traits. This is Volume 1 which consists of 21 chapters covering domestication and germplasm utilization, conventional breeding techniques and the role of biotechnology. In addition to various biotechnological applications in plant breeding, it includes functional genomics, mutations and methods of detection, and molecular markers. In vitro techniques and their applications in plant breeding are discussed with an emphasis on embryo rescue, somatic cell hybridization and somaclonal variation. Other chapters cover haploid breeding, transgenics, cryogenics and bioinformatics.




Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control


Book Description

Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Control, written by the world's most reputable experts in their respective fields of Rhizoctonia research, summarizes years of research in the various aspects of the ubiquitous complex group of soil-borne fungi belonging to the anamorph genus Rhizoctonia. Species of Rhizoctonia worldwide cause economically important diseases on most of the world's important plants such as cereals, potato, cotton, sugarbeet, vegetables, ornamentals and trees in nurseries. The subject reviews covered in the book include classic as well as modern approaches to Rhizoctonia research in: Taxonomy and Evolution, Genetics and Pathogenicity, Plant-Rhizoctonia Interactions, Ecology, Population and Disease Dynamics, Disease Occurrence and Management in Various Crops, Cultural Control, Biological Control, Germplasm for Resistance, Chemical and Integrated Control Strategies. It aims to be the standard reference source book on Rhizoctonia for the next decade or more, just as Parmeter et al. (1970) has been in the past. It will be an important publication for Rhizoctonia investigators, plant pathologists, students, extension specialists, crop producers and companies dealing with plant disease control.




Compendium of Potato Diseases


Book Description

Disease in the absence of infectious pathogens. Genetic abnormalities. Adverse environment. Nutrient imbalance. Disease in the presence of infectious pathogens. Fungi. Viruses. Mycoplasmas. Insect toxins. Nematodes. Aphids. Seed potato certification.




Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management


Book Description

The fungus Sclerotinia has always been a fancy and interesting subject of research both for the mycologists and pathologists. More than 250 species of the fungus have been reported in different host plants all over the world that cause heavy economic losses. It was a challenge to discover weak links in the disease cycle to manage Sclerotinia diseases of large number of crops. For researchers and s- dents, it has been a matter of concern, how to access voluminous literature on Sclerotinia scattered in different journals, reviews, proceedings of symposia, workshops, books, abstracts etc. to get a comprehensive picture. With the pub- cation of book on ‘Sclerotinia’, it has now become quite clear that now only three species of Sclerotinia viz. , S. sclerotiorum, S. minor and S. trifoliorum are valid. The authors have made an excellent attempt to compile all the available infor- tion on various aspects of the fungus Sclerotinia. The information generated so far has been presented in different chapters. After introducing the subject various aspects viz. , the diseases, symptomatology, disease assessment, its distribution, economic importance, the pathogen, its taxonomy, nomenclature, reproduction, reproductive structures with fine details, variability, perpetuation, infection and pathogenesis, biochemical, molecular and physiological aspects of host-pathogen interaction, seed infection, disease cycle, epidemiology and forecasting, host resistance with sources of resistance, mechanism of resistance and other mana- ment strategies have been covered.




Soybean


Book Description

Plants are important for a permanent ecosystem, because in the ecological pyramid plants support all the other living organisms at the base. Very important organization is thought to be the integral process of resource, transport, partitioning, metabolism, and production, which involves yield, biomass, and productivity in plants. Accordingly, it is important to obtain more information about the knowledge concerning yield, biomass, and productivity in plants. Soybean is one of the main crops largely contributing to our life, which is thought to be connected to our ecosystem through the above-mentioned integral process. This book focuses on the soybean, and reviews and research concerning the yield, biomass, and productivity of soybean are presented herein. This text updates the book published in 2017. Although there are many difficulties, the main aim of this book is to present a basis for the above-mentioned integral processes of resource, transport, partitioning, metabolism, and production, which involves yield, biomass, and productivity in plants (soybean), and to understand what supports this basis and the integral process. It is hoped that this and the preceding book will be essential reads.




Mycology Guidebook


Book Description