Field Theory of Guided Waves


Book Description

"Co-published with Oxford University Press Long considered the most comprehensive account of electromagnetic theory and analytical methods for solving waveguide and cavity problems, this new Second Edition has been completely revised and thoroughly updated -- approximately 40% new material!Packed with examples and applications FIELD THEORY OF GUIDED WAVES provides solutions to a large number of practical structures of current interest. The book includes an exceptionally complete discussion of scalar and Dyadic Green functions. Both a valuable review and source of basic information on applied mathematical topics and a hands-on source for solution methods and techniques, this book belongs on the desk of all engineers working in microwave and antenna systems!" Sponsored by: IEEE Antennas and Propagation Society




Field Theory of Guided Waves


Book Description

Considered the most comprehensive account of electromagnetic theory and analytical methods for solving waveguide and cavity problems, this text is now in a new second edition that has been completely revised and thoroughly updated, with approximately forty percent new material. Packed with examples and applications Field Theory of Guided Waves provides solutions to a large number of practical structures of current interest. The book includes a complete discussion of scalar and dyadic Green's function. As a valuable source of basic information on applied mathematical topics and a hands-on guide to solution methods and techniques, this book belongs on the desk of all engineers working on microwave and antenna systems.




The Essence of Dielectric Waveguides


Book Description

The Essence of Dielectric Waveguides provides an overview of the fundamental behavior of guided waves, essential to finding and interpreting the results of electromagnetic waveguide problems. Clearly and concisely written as well as brilliantly organized, this volume includes a detailed description of the fundamentals of electromagnetics, as well as a new discussion on boundary conditions and attenuation. It also covers the propagation characteristics of guided waves along classical canonical dielectric structures – planar, circular cylindrical, rectangular and elliptical waveguides. What’s more, the authors have included extensive coverage of inhomogeneous structures and approximate methods, as well as several powerful numerical approaches specifically applicable to dielectric waveguides.




Guided Wave Photonics


Book Description

A comprehensive presentation of the theory and simulation of optical waveguides and wave propagations in a guided environment, Guided Wave Photonics: Fundamentals and Applications with MATLAB supplies fundamental and advanced understanding of integrated optical devices that are currently employed in modern optical fiber communications systems and p




Ultrasonic Guided Waves in Solid Media


Book Description

Ultrasonic guided waves in solid media have become a critically important subject in nondestructive testing and structural health monitoring, as new faster, more sensitive, and more economical ways of looking at materials and structures have become possible. This book will lead to fresh creative ideas for use in new inspection procedures. Although the mathematics is sometimes sophisticated, the book can also be read by managers without detailed understanding of the concepts as it can be read from a 'black box' point of view. Overall, the material presented on wave mechanics - in particular, guided wave mechanics - establishes a framework for the creative data collection and signal processing needed to solve many problems using ultrasonic nondestructive evaluation and structural health monitoring. The book can be used as a reference in ultrasonic nondestructive evaluation by professionals and as a textbook for seniors and graduate students. This work extends the coverage of Rose's earlier book Ultrasonic Waves in Solid Media.







Theory of Waveguides and Transmission Lines


Book Description

This book covers the principles of operation of electromagnetic waveguides and transmission lines. The approach is divided between mathematical descriptions of basic behaviors and treatment of specific types of waveguide structures. Classical (distributed-network) transmission lines, their basic properties, their connection to lumped-element networks, and the distortion of pulses are discussed followed by a full field analysis of waveguide modes. Modes of specific kinds of waveguides - traditional hollow metallic waveguides, dielectric (including optical) waveguides, etc. are discussed. Problems of excitation and scattering of waveguide modes are addressed, followed by discussion of real systems and performance.




Optical Guided Waves and Devices


Book Description

Presents an introduction to the field of optical guided waves and devices for optoelectronic engineers, optical communication engineers and physicists. This text incorporates the topic of integrated optics and provides a balance between theoretical foundations and practical applications.




Theory and Computation of Electromagnetic Fields


Book Description

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.




Maxwell on the Electromagnetic Field


Book Description

Reproduces major portions of Maxwell's classic papers on key concepts in modern physics, written between 1855 and 1864, along with commentaries, notes, and bandw diagrams. Includes a detailed biographical introduction exploring the personal, historical, and scientific context of his work. Designed to be accessible to readers with limited knowledge of math or physics, as well as scientists and historians of science. Annotation copyright by Book News, Inc., Portland, OR