High Performance Fiber Reinforced Cement Composites 6


Book Description

High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, design engineers, material scientists.




Strain Hardening Cement Composites: Structural Design and Performance


Book Description

Strain Hardening Cement Composites, SHCC hereafter, demonstrate excellent mechanical behavior showing tensile strain hardening and multiple fine cracks. This strain hardening behavior improves the durability of concrete structures employing SHCC and the multiple fine cracks enhance structural performance. Reliable tensile performance of SHCC enables us to design structures explicitly accounting for SHCC’s tensile properties. Reinforced SHCC elements (R/SHCC) indicate large energy absorbing performance under large seismic excitation. Against various types of loads, R/SHCC elements can be designed by superimposing re-bar performance and SHCC’s tensile performance. This report focuses on flexural design, shear design, FE modeling and anti-seismic design of R/SHCC elements as well as application examples. Establishing design methods for new materials usually leads to exploring application areas and this trend should be demonstrated by collecting actual application examples of SHCC in structures.




RILEM 252-CMB Symposium


Book Description

This volume contains the Proceedings of the RILEM TC 252-CMB International Symposium on the Chemo-Mechanical Characterization of Bituminous Materials. The Symposium was attended by researchers and practitioners from different fields presenting the latest findings in the chemical, mechanical, and microstructural characterization of bituminous materials. The book offers new and cutting edge papers on innovative techniques for the characterization of bituminous materials, gaining new insights into current issues such as effects of aging, moisture, and temperature.










Testing and Characterization of Sustainable Innovative Bituminous Materials and Systems


Book Description

This book presents the detailed results of five task groups of the RILEM technical committee TC 237-SIB on Testing and Characterization of Sustainable Innovative Bituminous Materials and Systems. It concentrates on specific new topics in asphalt binder and mixture testing, dealing with new developments in asphalt testing, in particular also in view of new innovative bituminous materials, such as hot and cold recycled mixtures, grid reinforced pavements and recycled Reclaimed Asphalt Pavements (RAP), where test methods developed for traditional asphalt concrete are not a priori applicable. The main objective is providing a basis for pre-standardization by comparing different test methods and showing ways for fundamental improvements. Thus, the book also points the way for a further advanced chemo-physical understanding of materials and their role in pavement systems relying on fundamental material properties and suitable models for describing and predicting the intrinsic mechanisms that determine the material behavior.




Ultra High Performance Concrete


Book Description




Advances in Modeling Concrete Service Life


Book Description

In this book, a critical analysis is made on service life models related to reinforcement corrosion. The contributors are on the frontier of knowledge in the field of durability of reinforced concrete. Topics covered in the book include: causes and mechanisms of deterioration, transport mechanisms in concrete, numerical modeling of concrete behavior, durability modeling and prediction, reliability approach to structural design for durability, structural behavior following degradation of concrete structures, deterioration and repair of concrete structures, and corrosion measurement techniques.