Fifty Lectures for American Mathematics Competitions


Book Description

While the books in this series are primarily designed for AMC competitors, they contain the most essential and indispensable concepts used throughout middle and high school mathematics. Some featured topics include key concepts such as equations, polynomials, exponential and logarithmic functions in Algebra, various synthetic and analytic methods used in Geometry, and important facts in Number Theory. The topics are grouped in lessons focusing on fundamental concepts. Each lesson starts with a few solved examples followed by a problem set meant to illustrate the content presented. At the end, the solutions to the problems are discussed with many containing multiple methods of approach. I recommend these books to not only contest participants, but also to young, aspiring mathletes in middle school who wish to consolidate their mathematical knowledge. I have personally used a few of the books in this collection to prepare some of my students for the AMC contests or to form a foundation for others. By Dr. Titu Andreescu US IMO Team Leader (1995 - 2002) Director, MAA American Mathematics Competitions (1998 - 2003) Director, Mathematical Olympiad Summer Program (1995 - 2002) Coach of the US IMO Team (1993 - 2006) Member of the IMO Advisory Board (2002 - 2006) Chair of the USAMO Committee (1996 - 2004) I love this book! I love the style, the selection of topics and the choice of problems to illustrate the ideas discussed. The topics are typical contest problem topics: divisors, absolute value, radical expressions, Veita's Theorem, squares, divisibility, lots of geometry, and some trigonometry. And the problems are delicious. Although the book is intended for high school students aiming to do well in national and state math contests like the American Mathematics Competitions, the problems are accessible to very strong middle school students. The book is well-suited for the teacher-coach interested in sets of problems on a given topic. Each section begins with several substantial solved examples followed by a varied list of problems ranging from easily accessible to very challenging. Solutions are provided for all the problems. In many cases, several solutions are provided. By Professor Harold Reiter Chair of MATHCOUNTS Question Writing Committee. Chair of SAT II Mathematics committee of the Educational Testing Service Chair of the AMC 12 Committee (and AMC 10) 1993 to 2000.




50th IMO - 50 Years of International Mathematical Olympiads


Book Description

In July 2009 Germany hosted the 50th International Mathematical Olympiad (IMO). For the very first time the number of participating countries exceeded 100, with 104 countries from all continents. Celebrating the 50th anniversary of the IMO provides an ideal opportunity to look back over the past five decades and to review its development to become a worldwide event. This book is a report about the 50th IMO as well as the IMO history. A lot of data about all the 50 IMOs are included. We list the most successful contestants, the results of the 50 Olympiads and the 112 countries that have ever taken part. It is impressive to see that many of the world’s leading research mathematicians were among the most successful IMO participants in their youth. Six of them gave presentations at a special celebration: Bollobás, Gowers, Lovász, Smirnov, Tao and Yoccoz. This book is aimed at students in the IMO age group and all those who have interest in this worldwide leading competition for highschool students.




Fifty Challenging Problems in Probability with Solutions


Book Description

Remarkable puzzlers, graded in difficulty, illustrate elementary and advanced aspects of probability. These problems were selected for originality, general interest, or because they demonstrate valuable techniques. Also includes detailed solutions.




The Last Lecture


Book Description

The author, a computer science professor diagnosed with terminal cancer, explores his life, the lessons that he has learned, how he has worked to achieve his childhood dreams, and the effect of his diagnosis on him and his family.




Putnam and Beyond


Book Description

This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quad ratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and gradu ate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons.




American Regions Mathematics League Contests (Arml) Preparation


Book Description

The book contains seven lectures based on the ARML contest curriculum. Each lecture includes (1) basic skills with examples, (2) practice problems, and (3) detailed solutions for each problem.







The William Lowell Putnam Mathematical Competition 1985-2000


Book Description

This third volume of problems from the William Lowell Putnam Competition is unlike the previous two in that it places the problems in the context of important mathematical themes. The authors highlight connections to other problems, to the curriculum and to more advanced topics. The best problems contain kernels of sophisticated ideas related to important current research, and yet the problems are accessible to undergraduates. The solutions have been compiled from the American Mathematical Monthly, Mathematics Magazine and past competitors. Multiple solutions enhance the understanding of the audience, explaining techniques that have relevance to more than the problem at hand. In addition, the book contains suggestions for further reading, a hint to each problem, separate from the full solution and background information about the competition. The book will appeal to students, teachers, professors and indeed anyone interested in problem solving as a gateway to a deep understanding of mathematics.




Another Fine Math You've Got Me Into. . .


Book Description

Sixteen columns from the French edition of Scientific American feature oddball characters and wacky wordplay in a mathematical wonderland of puzzles and games that also imparts significant mathematical ideas. 1992 edition.




A Decade of the Berkeley Math Circle


Book Description

Many mathematicians have been drawn to mathematics through their experience with math circles: extracurricular programs exposing teenage students to advanced mathematical topics and a myriad of problem solving techniques and inspiring in them a lifelong love for mathematics. Founded in 1998, the Berkeley Math Circle (BMC) is a pioneering model of a U.S. math circle, aspiring to prepare our best young minds for their future roles as mathematics leaders. Over the last decade, 50 instructors--from university professors to high school teachers to business tycoons--have shared their passion for mathematics by delivering more than 320 BMC sessions full of mathematical challenges and wonders. Based on a dozen of these sessions, this book encompasses a wide variety of enticing mathematical topics: from inversion in the plane to circle geometry; from combinatorics to Rubik's cube and abstract algebra; from number theory to mass point theory; from complex numbers to game theory via invariants and monovariants. The treatments of these subjects encompass every significant method of proof and emphasize ways of thinking and reasoning via 100 problem solving techniques. Also featured are 300 problems, ranging from beginner to intermediate level, with occasional peaks of advanced problems and even some open questions. The book presents possible paths to studying mathematics and inevitably falling in love with it, via teaching two important skills: thinking creatively while still ``obeying the rules,'' and making connections between problems, ideas, and theories. The book encourages you to apply the newly acquired knowledge to problems and guides you along the way, but rarely gives you ready answers. ``Learning from our own mistakes'' often occurs through discussions of non-proofs and common problem solving pitfalls. The reader has to commit to mastering the new theories and techniques by ``getting your hands dirty'' with the problems, going back and reviewing necessary problem solving techniques and theory, and persistently moving forward in the book. The mathematical world is huge: you'll never know everything, but you'll learn where to find things, how to connect and use them. The rewards will be substantial. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.