Signal Processing Algorithms for Communication and Radar Systems


Book Description

An authoritative text covering the key topics, concepts and analytical tools needed to understand modern communication and radar systems. With numerous examples, exercises and computational results, it is an invaluable resource for graduate students in electrical and computer engineering, and practitioners in communications and radar engineering.




Communications, Signal Processing, and Systems


Book Description

This book brings together papers presented at the 2020 International Conference on Communications, Signal Processing, and Systems, which provides a venue to disseminate the latest developments and to discuss the interactions and links between these multidisciplinary fields. Spanning topics ranging from communications, signal processing and systems, this book is aimed at undergraduate and graduate students in Electrical Engineering, Computer Science and Mathematics, researchers and engineers from academia and industry as well as government employees (such as NSF, DOD and DOE).




Signal Processing for Multistatic Radar Systems


Book Description

Signal Processing for Multistatic Radar Systems: Adaptive Waveform Selection, Optimal Geometries and Pseudolinear Tracking Algorithms addresses three important aspects of signal processing for multistatic radar systems, including adaptive waveform selection, optimal geometries and pseudolinear tracking algorithms. A key theme of the book is performance optimization for multistatic target tracking and localization via waveform adaptation, geometry optimization and tracking algorithm design. Chapters contain detailed mathematical derivations and algorithmic development that are accompanied by simulation examples and associated MATLAB codes. This book is an ideal resource for university researchers and industry engineers in radar, radar signal processing and communications engineering. - Develops waveform selection algorithms in a multistatic radar setting to optimize target tracking performance - Assesses the optimality of a given target-sensor geometry and designs optimal geometries for target localization using mobile sensors - Gives an understanding of low-complexity and high-performance pseudolinear estimation algorithms for target localization and tracking in multistatic radar systems - Contains the MATLAB codes for the examples used in the book




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Annual Report


Book Description




Radar Signal Processing for Autonomous Driving


Book Description

The subject of this book is theory, principles and methods used in radar algorithm development with a special focus on automotive radar signal processing. In the automotive industry, autonomous driving is currently a hot topic that leads to numerous applications for both safety and driving comfort. It is estimated that full autonomous driving will be realized in the next twenty to thirty years and one of the enabling technologies is radar sensing. This book presents both detection and tracking topics specifically for automotive radar processing. It provides illustrations, figures and tables for the reader to quickly grasp the concepts and start working on practical solutions. The complete and comprehensive coverage of the topic provides both professionals and newcomers with all the essential methods and tools required to successfully implement and evaluate automotive radar processing algorithms.




Real-time Digital Signal Processing


Book Description




Compressed Sensing in Radar Signal Processing


Book Description

Learn about the most recent theoretical and practical advances in radar signal processing using tools and techniques from compressive sensing. Providing a broad perspective that fully demonstrates the impact of these tools, the accessible and tutorial-like chapters cover topics such as clutter rejection, CFAR detection, adaptive beamforming, random arrays for radar, space-time adaptive processing, and MIMO radar. Each chapter includes coverage of theoretical principles, a detailed review of current knowledge, and discussion of key applications, and also highlights the potential benefits of using compressed sensing algorithms. A unified notation and numerous cross-references between chapters make it easy to explore different topics side by side. Written by leading experts from both academia and industry, this is the ideal text for researchers, graduate students and industry professionals working in signal processing and radar.







Communications, Signal Processing, and Systems


Book Description

This book brings together papers from the 2019 International Conference on Communications, Signal Processing, and Systems, which was held in Urumqi, China, on July 20–22, 2019. Presenting the latest developments and discussing the interactions and links between these multidisciplinary fields, the book spans topics ranging from communications to signal processing and systems. It is chiefly intended for undergraduate and graduate students in electrical engineering, computer science and mathematics, researchers and engineers from academia and industry, as well as government employees.