Final Report on Work for Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas -- Tools for Improved Data Logistics


Book Description

This project focused on the use of Logistical Networking technology to address the challenges involved in rapid sharing of data from the the Center's gyrokinetic particle simulations, which can be on the order of terabytes per time step, among researchers at a number of geographically distributed locations. There is a great need to manage data on this scale in a flexible manner, with simulation code, file system, database and visualization functions requiring access. The project used distributed data management infrastructure based on Logistical Networking technology to address these issues in a way that maximized interoperability and achieved the levels of performance the required by the Center's application community. The work focused on the development and deployment of software tools and infrastructure for the storage and distribution of terascale datasets generated by simulations running at the National Center for Computational Science at Oak Ridge National Laboratory.




Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas (GPS - TTBP) Final Report


Book Description

The goal of this project is the development of the Gyrokinetic Toroidal Code (GTC) Framework and its applications to problems related to the physics of turbulence and turbulent transport in tokamaks, . The project involves physics studies, code development, noise effect mitigation, supporting computer science efforts, diagnostics and advanced visualizations, verification and validation. Its main scientific themes are mesoscale dynamics and non-locality effects on transport, the physics of secondary structures such as zonal flows, and strongly coherent wave-particle interaction phenomena at magnetic precession resonances. Special emphasis is placed on the implications of these themes for rho-star and current scalings and for the turbulent transport of momentum. GTC-TTBP also explores applications to electron thermal transport, particle transport; ITB formation and cross-cuts such as edge-core coupling, interaction of energetic particles with turbulence and neoclassical tearing mode trigger dynamics. Code development focuses on major initiatives in the development of full-f formulations and the capacity to simulate flux-driven transport. In addition to the full-f -formulation, the project includes the development of numerical collision models and methods for coarse graining in phase space. Verification is pursued by linear stability study comparisons with the FULL and HD7 codes and by benchmarking with the GKV, GYSELA and other gyrokinetic simulation codes. Validation of gyrokinetic models of ion and electron thermal transport is pursed by systematic stressing comparisons with fluctuation and transport data from the DIII-D and NSTX tokamaks. The physics and code development research programs are supported by complementary efforts in computer sciences, high performance computing, and data management.




Center for Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasma


Book Description

The UCLA work on this grant was to design and help implement an object-oriented version of the GTC code, which is written in Fortran90. The GTC code is the main global gyrokinetic code used in this project, and over the years multiple, incompatible versions have evolved. The reason for this effort is to allow multiple authors to work together on GTC and to simplify future enhancements to GTC. The effort was designed to proceed incrementally. Initially, an upper layer of classes (derived types and methods) was implemented which called the original GTC code 'under the hood.' The derived types pointed to data in the original GTC code, and the methods called the original GTC subroutines. The original GTC code was modified only very slightly. This allowed one to define (and refine) a set of classes which described the important features of the GTC code in a new, more abstract way, with a minimum of implementation. Furthermore, classes could be added one at a time, and at the end of the each day, the code continued to work correctly. This work was done in close collaboration with Y. Nishimura from UC Irvine and Stefan Ethier from PPPL. Ten classes were ultimately defined and implemented: gyrokinetic and drift kinetic particles, scalar and vector fields, a mesh, jacobian, FLR, equilibrium, interpolation, and particles species descriptors. In the second state of this development, some of the scaffolding was removed. The constructors in the class objects now allocated the data and the array data in the original GTC code was removed. This isolated the components and now allowed multiple instantiations of the objects to be created, in particular, multiple ion species. Again, the work was done incrementally, one class at a time, so that the code was always working properly. This work was done in close collaboration with Y. Nishimura and W. Zhang from UC Irvine and Stefan Ethier from PPPL. The third stage of this work was to integrate the capabilities of the various versions of the GTC code into one flexible and extensible version. To do this, we developed a methodology to implement Design Patterns in Fortran90. Design Patterns are abstract solutions to generic programming problems, which allow one to handle increased complexity. This work was done in collaboration with Henry Gardner, a computer scientist (and former plasma physicist) from the Australian National University. As an example, the Strategy Pattern is being used in GTC to support multiple solvers. This new code is currently being used in the study of energetic particles. A document describing the evolution of the GTC code to this new object-oriented version is available to users of GTC.




Center for Gyrokinetic Particle Simulations of Turbulent Transport in Burning Plasmas


Book Description

This is the Final Technical Report for University of Colorado's portion of the SciDAC project 'Center for Gyrokinetic Particle Simulation of Turbulent Transport.' This is funded as a multi-institutional SciDAC Center and W.W. Lee at the Princeton Plasma Physics Laboratory is the lead Principal Investigator. Scott Parker is the local Principal Investigator for University of Colorado and Yang Chen is a Co-Principal Investigator. This is Cooperative Agreement DE-FC02-05ER54816. Research personnel include Yang Chen (Senior Research Associate), Jianying Lang (Graduate Research Associate, Ph. D. Physics Student) and Scott Parker (Associate Professor). Research includes core microturbulence studies of NSTX, simulation of trapped electron modes, development of efficient particle-continuum hybrid methods and particle convergence studies of electron temperature gradient driven turbulence simulations. Recently, the particle-continuum method has been extended to five-dimensions in GEM. We find that actually a simple method works quite well for the Cyclone base case with either fully kinetic or adiabatic electrons. Particles are deposited on a 5D phase-space grid using nearest-grid-point interpolation. Then, the value of delta-f is reset, but not the particle's trajectory. This has the effect of occasionally averaging delta-f of nearby (in the phase space) particles. We are currently trying to estimate the dissipation (or effective collision operator). We have been using GEM to study turbulence and transport in NSTX with realistic equilibrium density and temperature profiles, including impurities, magnetic geometry and ExB shear flow. Greg Rewoldt, PPPL, has developed a TRANSP interface for GEM that specifies the equilibrium profiles and parameters needed to run realistic NSTX cases. Results were reported at the American Physical Society - Division of Plasma Physics, and we are currently running convergence studies to ensure physical results. We are also studying the effect of parallel shear flows, which can be quite strong in NSTX. Recent long-time simulations of electron temperature gradient driven turbulence, show that zonal flows slowly grow algebraically via the Rosenbluth-Hinton random walk mechanism. Eventually, the zonal flow gets to a level where it shear suppresses the turbulence. We have demonstrated this behavior with Cyclone base-case parameters, except with a 30% lower temperature gradient. We can demonstrate the same phenomena at higher gradients, but so far, have been unable to get a converged result at the higher temperature gradient. We find that electron ion collisions cause the zonal flows to grow at a slower rate and results in a higher heat flux. So, far all ETG simulations that come to a quasi-steady state show continued build up of zonal flow, see it appears to be a universal phenomena (for ETG). Linear and nonlinear simulations of Collisional and Collisionless trapped electron modes are underway. We find that zonal flow is typically important. We can, however, reproduce the Tannert and Jenko result (that zonal flow is unimportant) using their parameters with the electron temperature three times the ion temperature. For a typical weak gradient core value of density gradient and no temperature gradient, the CTEM is dominant. However, for a steeper density gradient (and still no temperature gradient), representative of the edge, higher k drift-waves are dominant. For the weaker density gradient core case, nonlinear simulations using GEM are routine. For the steeper gradient edge case, the nonlinear fluctuations are very high and a stationary state has not been obtained. This provides motivation for the particle-continuum algorithm. We also note that more physics, e.g. profile variation and equilibrium ExB shear flow should be significantly stabilizing, making such simulations feasible using standard delta-f techniques. This research is ongoing.




Gyrokinetic Particle Simulation of Turbulent Transport in Burning Plasmas


Book Description

The SciDAC project at the IFS advanced the state of high performance computing for turbulent structures and turbulent transport. The team project with Prof Zhihong Lin [PI] at Univ California Irvine produced new understanding of the turbulent electron transport. The simulations were performed at the Texas Advanced Computer Center TACC and the NERSC facility by Wendell Horton, Lee Leonard and the IFS Graduate Students working in that group. The research included a Validation of the electron turbulent transport code using the data from a steady state university experiment at the University of Columbia in which detailed probe measurements of the turbulence in steady state were used for wide range of temperature gradients to compare with the simulation data. These results were published in a joint paper with Texas graduate student Dr. Xiangrong Fu using the work in his PhD dissertation. X.R. Fu, W. Horton, Y. Xiao, Z. Lin, A.K. Sen and V. Sokolov, "Validation of electron Temperature gradient turbulence in the Columbia Linear Machine, Phys. Plasmas 19, 032303 (2012).




The Fairy Tale of Nuclear Fusion


Book Description

This carefully researched book presents facts and arguments showing, beyond a doubt, that nuclear fusion power will not be technically feasible in time to satisfy the world's urgent need for climate-neutral energy. The author describes the 70-year history of nuclear fusion; the vain attempts to construct an energy-generating nuclear fusion power reactor, and shows that even in the most optimistic scenario nuclear fusion, in spite of the claims of its proponents, will not be able to make a sizable contribution to the energy mix in this century, whatever the outcome of ITER. This implies that fusion power will not be a factor in combating climate change, and that the race to save the climate with carbon-free energy will have been won or lost long before the first nuclear fusion power station comes on line. Aimed at the general public as well as those whose decisions directly affect energy policy, this book will be a valuable resource for informing future debates.




Turbulent Transport in Magnetized Plasmas


Book Description

The book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th century. It describes theory, experiments and simulations in a unified and up-to-date presentation of the issues of achieving nuclear fusion power.







Modern Fortran


Book Description

Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you’ll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. Summary Using Fortran, early and accurate forecasts for hurricanes and other major storms have saved thousands of lives. Better designs for ships, planes, and automobiles have made travel safer, more efficient, and less expensive than ever before. Using Fortran, low-level machine learning and deep learning libraries provide incredibly easy, fast, and insightful analysis of massive data. Fortran is an amazingly powerful and flexible programming language that forms the foundation of high performance computing for research, science, and industry. And it's come a long, long way since starting life on IBM mainframes in 1956. Modern Fortran is natively parallel, so it's uniquely suited for efficiently handling problems like complex simulations, long-range predictions, and ultra-precise designs. If you're working on tasks where speed, accuracy, and efficiency matter, it's time to discover—or re-discover—Fortran.. About the technology For over 60 years Fortran has been powering mission-critical scientific applications, and it isn't slowing down yet! Rock-solid reliability and new support for parallel programming make Fortran an essential language for next-generation high-performance computing. Simply put, the future is in parallel, and Fortran is already there. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the book Modern Fortran teaches you to develop fast, efficient parallel applications using twenty-first-century Fortran. In this guide, you'll dive into Fortran by creating fun apps, including a tsunami simulator and a stock price analyzer. Filled with real-world use cases, insightful illustrations, and hands-on exercises, Modern Fortran helps you see this classic language in a whole new light. What's inside Fortran's place in the modern world Working with variables, arrays, and functions Module development Parallelism with coarrays, teams, and events Interoperating Fortran with C About the reader For developers and computational scientists. No experience with Fortran required. About the author Milan Curcic is a meteorologist, oceanographer, and author of several general-purpose Fortran libraries and applications. Table of Contents PART 1 - GETTING STARTED WITH MODERN FORTRAN 1 Introducing Fortran 2 Getting started: Minimal working app PART 2 - CORE ELEMENTS OF FORTRAN 3 Writing reusable code with functions and subroutines 4 Organizing your Fortran code using modules 5 Analyzing time series data with arrays 6 Reading, writing, and formatting your data PART 3 - ADVANCED FORTRAN USE 7 Going parallel with Fortan coarrays 8 Working with abstract data using derived types 9 Generic procedures and operators for any data type 10 User-defined operators for derived types PART 4 - THE FINAL STRETCH 11 Interoperability with C: Exposing your app to the web 12 Advanced parallelism with teams, events, and collectives




Principles of Plasma Diagnostics


Book Description

This book provides a systematic introduction to the physics of plasma diagnostics measurements. It develops from first principles the concepts needed to plan, execute and interpret plasma measurements, making it a suitable book for graduate students and professionals with little plasma physics background. The book will also be a valuable reference for seasoned plasma physicists, both experimental and theoretical, as well as those with an interest in space and astrophysical applications. This second edition is thoroughly revised and updated, with new sections and chapters covering recent developments in the field.