Fostering Integrity in Research


Book Description

The integrity of knowledge that emerges from research is based on individual and collective adherence to core values of objectivity, honesty, openness, fairness, accountability, and stewardship. Integrity in science means that the organizations in which research is conducted encourage those involved to exemplify these values in every step of the research process. Understanding the dynamics that support â€" or distort â€" practices that uphold the integrity of research by all participants ensures that the research enterprise advances knowledge. The 1992 report Responsible Science: Ensuring the Integrity of the Research Process evaluated issues related to scientific responsibility and the conduct of research. It provided a valuable service in describing and analyzing a very complicated set of issues, and has served as a crucial basis for thinking about research integrity for more than two decades. However, as experience has accumulated with various forms of research misconduct, detrimental research practices, and other forms of misconduct, as subsequent empirical research has revealed more about the nature of scientific misconduct, and because technological and social changes have altered the environment in which science is conducted, it is clear that the framework established more than two decades ago needs to be updated. Responsible Science served as a valuable benchmark to set the context for this most recent analysis and to help guide the committee's thought process. Fostering Integrity in Research identifies best practices in research and recommends practical options for discouraging and addressing research misconduct and detrimental research practices.




Conducting Biosocial Surveys


Book Description

Recent years have seen a growing tendency for social scientists to collect biological specimens such as blood, urine, and saliva as part of large-scale household surveys. By combining biological and social data, scientists are opening up new fields of inquiry and are able for the first time to address many new questions and connections. But including biospecimens in social surveys also adds a great deal of complexity and cost to the investigator's task. Along with the usual concerns about informed consent, privacy issues, and the best ways to collect, store, and share data, researchers now face a variety of issues that are much less familiar or that appear in a new light. In particular, collecting and storing human biological materials for use in social science research raises additional legal, ethical, and social issues, as well as practical issues related to the storage, retrieval, and sharing of data. For example, acquiring biological data and linking them to social science databases requires a more complex informed consent process, the development of a biorepository, the establishment of data sharing policies, and the creation of a process for deciding how the data are going to be shared and used for secondary analysis-all of which add cost to a survey and require additional time and attention from the investigators. These issues also are likely to be unfamiliar to social scientists who have not worked with biological specimens in the past. Adding to the attraction of collecting biospecimens but also to the complexity of sharing and protecting the data is the fact that this is an era of incredibly rapid gains in our understanding of complex biological and physiological phenomena. Thus the tradeoffs between the risks and opportunities of expanding access to research data are constantly changing. Conducting Biosocial Surveys offers findings and recommendations concerning the best approaches to the collection, storage, use, and sharing of biospecimens gathered in social science surveys and the digital representations of biological data derived therefrom. It is aimed at researchers interested in carrying out such surveys, their institutions, and their funding agencies.




Engaging Schools


Book Description

When it comes to motivating people to learn, disadvantaged urban adolescents are usually perceived as a hard sell. Yet, in a recent MetLife survey, 89 percent of the low-income students claimed "I really want to learn" applied to them. What is it about the school environmentâ€"pedagogy, curriculum, climate, organizationâ€"that encourages or discourages engagement in school activities? How do peers, family, and community affect adolescents' attitudes towards learning? Engaging Schools reviews current research on what shapes adolescents' school engagement and motivation to learnâ€"including new findings on students' sense of belongingâ€"and looks at ways these can be used to reform urban high schools. This book discusses what changes hold the greatest promise for increasing students' motivation to learn in these schools. It looks at various approaches to reform through different methods of instruction and assessment, adjustments in school size, vocational teaching, and other key areas. Examples of innovative schools, classrooms, and out-of-school programs that have proved successful in getting high school kids excited about learning are also included.




The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education


Book Description

In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.




Advanced Technology for Human Support in Space


Book Description

Advanced Technology for Human Support in Space was written in response to a request from NASA's Office of Life and Microgravity Sciences and Applications (OLMSA) to evaluate its Advanced Human Support Technology Program. This report reviews the four major areas of the program: advanced life support (ALS), environmental monitoring and control (EMC), extravehicular activities (EVA), and space human factors (SHF). The focus of this program is on long-term technology development applicable to future human long-duration space missions, such as for a hypothetical new mission to the Moon or Mars.







Understanding and Evaluating Research


Book Description

Understanding and Evaluating Research: A Critical Guide shows students how to be critical consumers of research and to appreciate the power of methodology as it shapes the research question, the use of theory in the study, the methods used, and how the outcomes are reported. The book starts with what it means to be a critical and uncritical reader of research, followed by a detailed chapter on methodology, and then proceeds to a discussion of each component of a research article as it is informed by the methodology. The book encourages readers to select an article from their discipline, learning along the way how to assess each component of the article and come to a judgment of its rigor or quality as a scholarly report.




Understanding the Educational and Career Pathways of Engineers


Book Description

Engineering skills and knowledge are foundational to technological innovation and development that drive long-term economic growth and help solve societal challenges. Therefore, to ensure national competitiveness and quality of life it is important to understand and to continuously adapt and improve the educational and career pathways of engineers in the United States. To gather this understanding it is necessary to study the people with the engineering skills and knowledge as well as the evolving system of institutions, policies, markets, people, and other resources that together prepare, deploy, and replenish the nation's engineering workforce. This report explores the characteristics and career choices of engineering graduates, particularly those with a BS or MS degree, who constitute the vast majority of degreed engineers, as well as the characteristics of those with non-engineering degrees who are employed as engineers in the United States. It provides insight into their educational and career pathways and related decision making, the forces that influence their decisions, and the implications for major elements of engineering education-to-workforce pathways.




The Role of Theory in Advancing 21st-Century Biology


Book Description

Although its importance is not always recognized, theory is an integral part of all biological research. Biologists' theoretical and conceptual frameworks inform every step of their research, affecting what experiments they do, what techniques and technologies they develop and use, and how they interpret their data. By examining how theory can help biologists answer questions like "What are the engineering principles of life?" or "How do cells really work?" the report shows how theory synthesizes biological knowledge from the molecular level to the level of whole ecosystems. The book concludes that theory is already an inextricable thread running throughout the practice of biology; but that explicitly giving theory equal status with other components of biological research could help catalyze transformative research that will lead to creative, dynamic, and innovative advances in our understanding of life.




Characterization of Remote-Handled Transuranic Waste for the Waste Isolation Pilot Plant


Book Description

The U.S. Department of Energy (DOE) disposes of plutonium-contaminated debris from its 27 nuclear weapons facilities at the Waste Isolation Pilot Plant (WIPP), an underground repository in Carlsbad, New Mexico. After four years of operational experience, DOE has opportunities to make changes to the costly and time-consuming process of "characterizing" the waste to confirm that it is appropriate for shipment to and disposal at WIPP.  The report says that in order to make such changes, DOE should conduct and publish a systematic and quantitative assessment to show that the proposed changes would not affect the protection of workers, the public, or the environment.