Finite-Dimensional Division Algebras Over Fields


Book Description

Finite-dimensional division algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensio= nal algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brau= er-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts;they arose first in the study of the so-called "multiplication algebras of Riemann matrices". The largest part of the book is the fifth chapter, dealing with involu= torial simple algebras of finite dimension over a field. Of particular interest are the Jordan algebras determined by these algebras with involution;their structure is discussed. Two important concepts of these algebras with involution are the universal enveloping algebras and the reduced norm. Corrections of the 1st edition (1996) carried out on behalf of N. Jacobson (deceased) by Prof. P.M. Cohn (UC London, UK).




Finite-Dimensional Division Algebras over Fields


Book Description

Here, the eminent algebraist, Nathan Jacobsen, concentrates on those algebras that have an involution. Although they appear in many contexts, these algebras first arose in the study of the so-called "multiplication algebras of Riemann matrices". Of particular interest are the Jordan algebras determined by such algebras, and thus their structure is discussed in detail. Two important concepts also dealt with are the universal enveloping algebras and the reduced norm. However, the largest part of the book is the fifth chapter, which focuses on involutorial simple algebras of finite dimension over a field.




Structure of Algebras


Book Description

The first three chapters of this work contain an exposition of the Wedderburn structure theorems. Chapter IV contains the theory of the commutator subalgebra of a simple subalgebra of a normal simple algebra, the study of automorphisms of a simple algebra, splitting fields, and the index reduction factor theory. The fifth chapter contains the foundation of the theory of crossed products and of their special case, cyclic algebras. The theory of exponents is derived there as well as the consequent factorization of normal division algebras into direct factors of prime-power degree. Chapter VI consists of the study of the abelian group of cyclic systems which is applied in Chapter VII to yield the theory of the structure of direct products of cyclic algebras and the consequent properties of norms in cyclic fields. This chapter is closed with the theory of $p$-algebras. In Chapter VIII an exposition is given of the theory of the representations of algebras. The treatment is somewhat novel in that while the recent expositions have used representation theorems to obtain a number of results on algebras, here the theorems on algebras are themselves used in the derivation of results on representations. The presentation has its inspiration in the author's work on the theory of Riemann matrices and is concluded by the introduction to the generalization (by H. Weyl and the author) of that theory. The theory of involutorial simple algebras is derived in Chapter X both for algebras over general fields and over the rational field. The results are also applied in the determination of the structure of the multiplication algebras of all generalized Riemann matrices, a result which is seen in Chapter XI to imply a complete solution of the principal problem on Riemann matrices.




Skew Fields


Book Description

Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts and most accounts have hitherto been confined to division algebras, that is skew fields finite-dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation and a precise description of the embedding problem are followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorems of G. M. Bergman are proved here as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples. The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. The treatment of equations over skew fields has been simplified and extended by the use of matrix methods, and the beginnings of non-commutative algebraic geometry are presented, with a precise account of the problems that need to be overcome for a satisfactory theory. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form, and notes and comments at the ends of chapters provide historical background.




Finite Dimensional Algebras


Book Description

This English edition has an additional chapter "Elements of Homological Al gebra". Homological methods appear to be effective in many problems in the theory of algebras; we hope their inclusion makes this book more complete and self-contained as a textbook. We have also taken this occasion to correct several inaccuracies and errors in the original Russian edition. We should like to express our gratitude to V. Dlab who has not only metic ulously translated the text, but has also contributed by writing an Appendix devoted to a new important class of algebras, viz. quasi-hereditary algebras. Finally, we are indebted to the publishers, Springer-Verlag, for enabling this book to reach such a wide audience in the world of mathematical community. Kiev, February 1993 Yu.A. Drozd V.V. Kirichenko Preface The theory of finite dimensional algebras is one of the oldest branches of modern algebra. Its origin is linked to the work of Hamilton who discovered the famous algebra of quaternions, and Cayley who developed matrix theory. Later finite dimensional algebras were studied by a large number of mathematicians including B. Peirce, C.S. Peirce, Clifford, ·Weierstrass, Dedekind, Jordan and Frobenius. At the end of the last century T. Molien and E. Cartan described the semisimple algebras over the complex and real fields and paved the first steps towards the study of non-semi simple algebras.




Quaternion Algebras


Book Description

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike. Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unit groups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces. Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts and motivation are recapped throughout.




Introduction to Noncommutative Algebra


Book Description

Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.




Algebra IX


Book Description

The first contribution by Carter covers the theory of finite groups of Lie type, an important field of current mathematical research. In the second part, Platonov and Yanchevskii survey the structure of finite-dimensional division algebras, including an account of reduced K-theory.




Advanced Algebra


Book Description

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.




Division Algebras:


Book Description

I don't know who Gigerenzer is, but he wrote something very clever that I saw quoted in a popular glossy magazine: "Evolution has tuned the way we think to frequencies of co-occurances, as with the hunter who remembers the area where he has had the most success killing game." This sanguine thought explains my obsession with the division algebras. Every effort I have ever made to connect them to physics - to the design of reality - has succeeded, with my expectations often surpassed. Doubtless this strong statement is colored by a selective memory, but the kind of game I sought, and still seek, seems to frowst about this particular watering hole in droves. I settled down there some years ago and have never feIt like Ieaving. This book is about the beasts I selected for attention (if you will, to ren der this metaphor politically correct, let's say I was a nature photographer), and the kind of tools I had to develop to get the kind of shots Iwanted (the tools that I found there were for my taste overly abstract and theoretical). Half of thisbook is about these tools, and some applications thereof that should demonstrate their power. The rest is devoted to a demonstration of the intimate connection between the mathematics of the division algebras and the Standard Model of quarks and leptons with U(l) x SU(2) x SU(3) gauge fields, and the connection of this model to lO-dimensional spacetime implied by the mathematics.