Finite Element Analysis for Civil Engineering with DIANA Software


Book Description

This book systematically introduces readers to the finite element analysis software DIANA (DIsplacement ANAlyzer) and its applications in civil engineering. Developed by TNO Corporation in the 1970s, DIANA is frequently used in civil engineering and engineering mechanics. Unlike the software user’s manual, which provides a comprehensive introduction and theoretical analysis, this book presents a simplified overview of the basic background theory to help beginners master the software quickly. It also discusses GUI operation and the command console in Python language, and includes examples involving classical modeling operations to help readers review each section. Both the book and DIANA itself are valuable resources for students and researchers in all the structural engineering fields, such as civil engineering, bridge engineering, geotechnical engineering, tunnel engineering, underground structural engineering, irrigation, municipal engineering and fire engineering.




Finite Elements in Civil Engineering Applications


Book Description

These proceedings present high-level research in structural engineering, concrete mechanics and quasi-brittle materials, including the prime concern of durability requirements and earthquake resistance of structures.




Life-Cycle Civil Engineering


Book Description

Life-Cycle Civil Engineering contains the papers presented at the First International Symposium on Life-Cycle Civil Engineering (IALCCE 08), held in Villa Monastero, Varenna, Lake Como, Italy, 10-14 June, 2008. It consists of a book and a CD-ROM containing 150 papers, including eight keynote papers and 142 technical contributions from 28 countries.




Seismic Evaluation and Rehabilitation of Structures


Book Description

In the past, facilities considered to be at the end of their useful life were demolished and replaced with new ones that better met the functional requirements of modern society, including new safety standards. Humankind has recently recognised the threats to the environment and to our limited natural resources due to our relentless determination to destroy the old and build anew. With the awareness of these constraints and the emphasis on sustainability, in future the majority of old structures will be retrofitted to extend their service life as long as feasible. In keeping with this new approach, the EU’s Construction Products Regulation 305/2011, which is the basis of the Eurocodes, included the sustainable use of resources as an "Essential Requirement" for construction. So, the forthcoming second generation of EN-Eurocodes will cover not only the design of new structures, but the rehabilitation of existing ones as well. Most of the existing building stock and civil infrastructures are seismically deficient. When the time comes for a decision to prolong their service life with the help of structural and architectural upgrading, seismic retrofitting may be needed. Further, it is often decided to enhance the earthquake resistance of facilities that still meet their functional requirements and fulfil their purpose, if they are not earthquake-safe. In order to decide how badly a structure needs seismic upgrading or to prioritise it in a population of structures, a seismic evaluation is needed, which also serves as a guide for the extent and type of strengthening. Seismic codes do not sufficiently cover the delicate phase of seismic evaluation nor the many potential technical options for seismic upgrading; therefore research is on-going and the state-of-the-art is constantly evolving. All the more so as seismic evaluation and rehabilitation demand considerable expertise, to make best use of the available safety margins in the existing structure, to adapt the engineering capabilities and techniques at hand to the particularities of a project, to minimise disruption of use, etc. Further, as old structures are very diverse in terms of their materials and layout, seismic retrofitting does not lend itself to straightforward codified procedures or cook-book approaches. As such, seismic evaluation and rehabilitation need the best that the current state-of-the-art can offer on all aspects of earthquake engineering. This volume serves this need, as it gathers the most recent research of top seismic experts from around the world on seismic evaluation, retrofitting and closely related subjects.




Finite Elements in Civil Engineering Applications


Book Description

These proceedings present high-level research in structural engineering, concrete mechanics and quasi-brittle materials, including the prime concern of durability requirements and earthquake resistance of structures.




Finite Element Modeling of Textiles in AbaqusTM CAE


Book Description

The aim of the book is to provide engineers with a practical guide to Finite Element Modelling (FEM) in Abaqus CAE software. The guide is in the form of step-by-step procedures concerning yarns, woven fabric and knitted fabrics modelling, as well as their contact with skin so that the simulation of haptic perception between textiles and skin can be




InCIEC 2015


Book Description

The special focus of these proceedings is on the areas of infrastructure engineering and sustainability management. They provide detailed information on innovative research developments in construction materials and structures, in addition to a compilation of interdisciplinary findings combining nano-materials and engineering. The coverage of cutting-edge infrastructure and sustainability issues in engineering includes earthquakes, bioremediation, synergistic management, timber engineering, flood management and intelligent transport systems.




Slope Engineering


Book Description

The field of slope engineering encompasses slope stability analysis and design, movement monitoring, and slope safety management and maintenance. Engineers in this field are concerned with landslides and other gravity-stimulated mass movements. Their job is to frequently evaluate existing and proposed slopes to assess their stability. As such, this book provides information on remote sensing in landslide detection, tunnel face stability, stability analysis and maintenance of cut slopes, design techniques in rock and soil engineering, statistical models for landslide risk mapping, slope stability analysis in open-pit mines, ecological engineering for slope stabilization, and asphalt-stabilized strengthening in open-pit coal mining.




Civil Engineering


Book Description




Life Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision


Book Description

This volume contains the papers presented at IALCCE2018, the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE2018), held in Ghent, Belgium, October 28-31, 2018. It consists of a book of extended abstracts and a USB device with full papers including the Fazlur R. Khan lecture, 8 keynote lectures, and 390 technical papers from all over the world. Contributions relate to design, inspection, assessment, maintenance or optimization in the framework of life-cycle analysis of civil engineering structures and infrastructure systems. Life-cycle aspects that are developed and discussed range from structural safety and durability to sustainability, serviceability, robustness and resilience. Applications relate to buildings, bridges and viaducts, highways and runways, tunnels and underground structures, off-shore and marine structures, dams and hydraulic structures, prefabricated design, infrastructure systems, etc. During the IALCCE2018 conference a particular focus is put on the cross-fertilization between different sub-areas of expertise and the development of an overall vision for life-cycle analysis in civil engineering. The aim of the editors is to provide a valuable source of cutting edge information for anyone interested in life-cycle analysis and assessment in civil engineering, including researchers, practising engineers, consultants, contractors, decision makers and representatives from local authorities.