Finite Model Theory and Its Applications


Book Description

Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,“thebranchof mathematical logic which deals with the relation between a formal language and its interpretations”. No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero–one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.




College Mathematics for Business, Economics, Life Sciences and Social Sciences


Book Description

This accessible text is designed to help readers help themselves to excel. The content is organized into three parts: (1) A Library of Elementary Functions (Chapters 1–2), (2) Finite Mathematics (Chapters 3–9), and (3) Calculus (Chapters 10–15). The book's overall approach, refined by the authors' experience with large sections of college freshmen, addresses the challenges of learning when readers' prerequisite knowledge varies greatly. Reader-friendly features such as Matched Problems, Explore & Discuss questions, and Conceptual Insights, together with the motivating and ample applications, make this text a popular choice for today's students and instructors.







Calculus with Applications


Book Description

Calculus with Applications, Tenth Edition (also available in a Brief Version containing Chapters 1-9) by Lial, Greenwell, and Ritchey, is our most applied text to date, making the math relevant and accessible for students of business, life science, and social sciences. Current applications, many using real data, are incorporated in numerous forms throughout the book, preparing students for success in their professional careers. With this edition, students will find new ways to get involved with the material, such as "Your Turn" exercises and "Apply It" vignettes that encourage active participation. Note: This is the standalone book, if you want the book/access card order the ISBN below; 0321760026 / 9780321760029 Calculus with Applications plus MyMathLab with Pearson eText -- Access Card Package Package consists of: 0321431308 / 9780321431301 MyMathLab/MyStatLab -- Glue-in Access Card 0321654064 / 9780321654069 MyMathLab Inside Star Sticker 0321749006 / 9780321749000 Calculus with Applications




Finite Frames


Book Description

Hilbert space frames have long served as a valuable tool for signal and image processing due to their resilience to additive noise, quantization, and erasures, as well as their ability to capture valuable signal characteristics. More recently, finite frame theory has grown into an important research topic in its own right, with a myriad of applications to pure and applied mathematics, engineering, computer science, and other areas. The number of research publications, conferences, and workshops on this topic has increased dramatically over the past few years, but no survey paper or monograph has yet appeared on the subject. Edited by two of the leading experts in the field, Finite Frames aims to fill this void in the literature by providing a comprehensive, systematic study of finite frame theory and applications. With carefully selected contributions written by highly experienced researchers, it covers topics including: * Finite Frame Constructions; * Optimal Erasure Resilient Frames; * Quantization of Finite Frames; * Finite Frames and Compressed Sensing; * Group and Gabor Frames; * Fusion Frames. Despite the variety of its chapters' source and content, the book's notation and terminology are unified throughout and provide a definitive picture of the current state of frame theory. With a broad range of applications and a clear, full presentation, this book is a highly valuable resource for graduate students and researchers across disciplines such as applied harmonic analysis, electrical engineering, quantum computing, medicine, and more. It is designed to be used as a supplemental textbook, self-study guide, or reference book.




Beginning and Intermediate Algebra with Applications and Visualization


Book Description

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. The Rockswold/Krieger algebra series fosters conceptual understanding by using relevant applications and visualization to show students why math matters. It answers the common question “When will I ever use this?” Rockswold teaches students the math in context, rather than including the applications at the end of the presentation. By seamlessly integrating meaningful applications that include real data and supporting visuals (graphs, tables, charts, colors, and diagrams), students are able to see how math impacts their lives as they learn the concepts. The authors believe this approach deepens conceptual understanding and better prepares students for future math courses and life.




Linear Algebra And Its Applications


Book Description

From Tzuong-Tsieng Moh, a seasoned expert in algebra, comes a new book for students to better understand linear algebra. Writing from an experienced standpoint, Moh covers the many standard aspects comprising linear algebra, such as echelon forms, matrix algebra, linear transformations, and more. Moh further includes several advanced topics and applications, as well as self-correcting codes, Heisenberg's uncertainty principle, Maxwell's equations in relativity form, Google's search engine, and the theory of finitely generated modules over a PID. This book is ideal for both newcomers and experienced readers who want to attain a deeper understanding on both the basics and advanced topics of linear algebra and its vast applications. The wide range of topics combined with the depth of each discussion make it essential to be on the shelf of every mathematical beginner and enthusiast.




Mixed Finite Element Methods and Applications


Book Description

Non-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem, plate problems, elasticity and electromagnetism.




Nodal Discontinuous Galerkin Methods


Book Description

This book offers an introduction to the key ideas, basic analysis, and efficient implementation of discontinuous Galerkin finite element methods (DG-FEM) for the solution of partial differential equations. It covers all key theoretical results, including an overview of relevant results from approximation theory, convergence theory for numerical PDE’s, and orthogonal polynomials. Through embedded Matlab codes, coverage discusses and implements the algorithms for a number of classic systems of PDE’s: Maxwell’s equations, Euler equations, incompressible Navier-Stokes equations, and Poisson- and Helmholtz equations.




Mathematics and Its History


Book Description

This textbook provides a unified and concise exploration of undergraduate mathematics by approaching the subject through its history. Readers will discover the rich tapestry of ideas behind familiar topics from the undergraduate curriculum, such as calculus, algebra, topology, and more. Featuring historical episodes ranging from the Ancient Greeks to Fermat and Descartes, this volume offers a glimpse into the broader context in which these ideas developed, revealing unexpected connections that make this ideal for a senior capstone course. The presentation of previous versions has been refined by omitting the less mainstream topics and inserting new connecting material, allowing instructors to cover the book in a one-semester course. This condensed edition prioritizes succinctness and cohesiveness, and there is a greater emphasis on visual clarity, featuring full color images and high quality 3D models. As in previous editions, a wide array of mathematical topics are covered, from geometry to computation; however, biographical sketches have been omitted. Mathematics and Its History: A Concise Edition is an essential resource for courses or reading programs on the history of mathematics. Knowledge of basic calculus, algebra, geometry, topology, and set theory is assumed. From reviews of previous editions: “Mathematics and Its History is a joy to read. The writing is clear, concise and inviting. The style is very different from a traditional text. I found myself picking it up to read at the expense of my usual late evening thriller or detective novel.... The author has done a wonderful job of tying together the dominant themes of undergraduate mathematics.” Richard J. Wilders, MAA, on the Third Edition "The book...is presented in a lively style without unnecessary detail. It is very stimulating and will be appreciated not only by students. Much attention is paid to problems and to the development of mathematics before the end of the nineteenth century.... This book brings to the non-specialist interested in mathematics many interesting results. It can be recommended for seminars and will be enjoyed by the broad mathematical community." European Mathematical Society, on the Second Edition