Fire Safety Science


Book Description

Proceedings of the Third International Symposium on Fire Safety Science, University of Edinburgh, Scotland, UK, 8-12 July 1991.




Fire Science and Technology 2015


Book Description

This book focuses on topics in the entire spectrum of fire safety science, targeting research in fires, explosions, combustion science, heat transfer, fluid dynamics, risk analysis, structural engineering, and other subjects. The book contributes to a gain in advanced scientific knowledge and presents or advances new ideas in all topics in fire safety science. Two decades ago, the 1st Asia-Oceania Symposium on Fire Science and Technology was held in Hefei, China. Since then, the Asia-Oceania Symposia have grown in size and quality. This book, reflecting that growth, helps readers to understand fire safety technology, design, and methodology in diverse areas including historical buildings, photovoltaic panels, batteries, and electric vehicles.










Fire Safety Science


Book Description




Wood & Fire Safety


Book Description

This proceedings volume presents new scientific works of the research workers and experts from the field of Wood Science & Fire. It looks into the properties of various tree species across the continents affecting the fire-technical properties of wood and wood-based materials, its modifications, fire-retardant methods and other technological processes that have an impact on wood ignition and burning. The results of these findings have a direct impact on Building Construction and Design describing the fire safety of wooden buildings, mainly large and multi-story ones. The results of these experiments and findings may be applied, or are directly implemented into Fire Science, Hazard Control, Building Safety which makes the application of wood and wood materials in buildings possible, while maintaining strict fire regulations. One part of the contributions focuses on the symbiosis of the material and the fire-fighting technologies. Wood burning has its own specific features, therefore, the fire protection technologies need to be updated regularly. It also includes the issue of the intervention of fire-fighting and rescue teams in the fires of wooden buildings. Presentations deal with the issue of forest fires influenced by the climate changes, relief, fuel models based on the type and the age of the forest stand.




Fire Safety Science


Book Description




Ignition Handbook


Book Description

From the publisher's website: "The Handbook is a massive resource, consisting of 1116 pages, tightly set in a 2-column, 8.5" x 11" (215 x 280 mm) format. The book includes 627 black-and-white figures, 447 tables, and 140 color plates. The Handbook is divided into two main sections: Chapters 1 through 13 include presentations of the fundamental principles of ignition sources and of the response of ignitable materials to heat or energy in various forms. Chapters 14 and 15 constitute an "encyclopedia of ignition," containing extensive information on individual materials, devices, and products. Chapter 14 comprises alphabetically-arranged narrative descriptions of ignition properties and hazards for substances ranging from "Accelerants in incendiary fires" to "Zirconium." Chapter 15 contains database tables giving information on 473 pure chemical compounds and over 500 commercial or natural products, including such substances as dusts, fuels, lubricants, plastics, and woods."




Fire Science


Book Description

This textbook provides students and academics with a conceptual understanding of fire behavior and fire effects on people and ecosystems to support effective integrated fire management. Through case studies, interactive spreadsheets programmed with equations and graphics, and clear explanations, the book provides undergraduate, graduate, and professional readers with a straightforward learning path. The authors draw from years of experience in successfully teaching fundamental concepts and applications, synthesizing cutting-edge science, and applying lessons learned from fire practitioners. We discuss fire as part of environmental and human health. Our process-based, comprehensive, and quantitative approach encompasses combustion and heat transfer, and fire effects on people, plants, soils, and animals in forest, grassland, and woodland ecosystems from around the Earth. Case studies and examples link fundamental concepts to local, landscape, and global fire implications, including social-ecological systems. Globally, fire science and integrated fire management have made major strides in the last few decades. Society faces numerous fire-related challenges, including the increasing occurrence of large fires that threaten people and property, smoke that poses a health hazard, and lengthening fire seasons worldwide. Fires are useful to suppress fires, conserve wildlife and habitat, enhance livestock grazing, manage fuels, and in ecological restoration. Understanding fire science is critical to forecasting the implication of global change for fires and their effects. Increasing the positive effects of fire (fuels reduction, enhanced habitat for many plants and animals, ecosystem services increased) while reducing the negative impacts of fires (loss of human lives, smoke and carbon emissions that threaten health, etc.) is part of making fires good servants rather than bad masters.




Advanced Analysis and Design for Fire Safety of Steel Structures


Book Description

Advanced Analysis and Design for Fire Safety of Steel Structures systematically presents the latest findings on behaviours of steel structural components in a fire, such as the catenary actions of restrained steel beams, the design methods for restrained steel columns, and the membrane actions of concrete floor slabs with steel decks. Using a systematic description of structural fire safety engineering principles, the authors illustrate the important difference between behaviours of an isolated structural element and the restrained component in a complete structure under fire conditions. The book will be an essential resource for structural engineers who wish to improve their understanding of steel buildings exposed to fires. It is also an ideal textbook for introductory courses in fire safety for master’s degree programs in structural engineering, and is excellent reading material for final-year undergraduate students in civil engineering and fire safety engineering. Furthermore, it successfully bridges the information gap between fire safety engineers, structural engineers and building inspectors, and will be of significant interest to architects, code officials, building designers and fire fighters. Dr. Guoqiang Li is a Professor at the College of Civil Engineering of Tongji University, China; Dr. Peijun Wang is an Associate Professor at the School of Civil Engineering of Shandong University, China.