Fish Physiology: Organic Chemical Toxicology of Fishes


Book Description

Fish Physiology: Organic Chemical Toxicology of Fishes discusses the different types of organic chemical contaminants and their respective toxic effects in fish. The book also covers the detection of dissolved organic compounds and methods to assess organic toxicity. Substances addressed in this book include organometallics, hydrocarbons, endocrine disrupting compounds (EDCs), insecticides, herbicides, and pharmaceuticals. Fish are exposed to an ever-increasing array of organic chemicals that find their way into rivers and oceans. Some of these compounds are no longer being produced but nonetheless persist within the environment (persistent organic pollutants, or POPs). The exposure of fish to toxic organic compounds has potential impact on human, fish, and ecosystem health. Yet the regulations that govern environmental water quality vary worldwide, and compliance is never complete. This book provides a crucial resource on these issues for researchers in zoology, fish physiology, and related fields; applied researchers in environmental monitoring, conservation biology, and toxicology; and university-level students and instructors in these areas. - Organized by type of toxic organic chemicals - Includes metals, POPs, EDCs, herbicides, insecticides, and pharmaceuticals - Measures toxicity in a variety of ways aside from lethality - Probes the toxic effects of compound mixtures as well as single pollutants




The Toxicology of Fishes


Book Description

When looking for a book on fish toxicology, you might find one that discusses the biochemical and molecular aspects, or one that focuses aquatic toxicology in general. You can find resources that cover human and animal toxicology or ecotoxicology in general, but no up-to-date, comprehensive monograph devoted to the effects of chemical pollution on




Fish Ecotoxicology


Book Description

In modern ecotoxicology, fish have become the major vertebrate model, and a tremendous body of information has been accumulated. This volume attempts to summarize our present knowledge in several fields of primary ecotoxicological interest ranging from the use of (ultra)structural modifications of selected cell systems as sources of biomarkers for environmental impact over novel approaches to monitoring the impact of xenobiotics with fish in vitro systems such as primary and permanent fish cell cultures, the importance of early life-stage tests with fish, the bioaccumulation of xenobiotics in fish, the origin of liver neoplastic lesions in small fish species, immunocytochemical approaches to monitoring effects in cytochrome P450-related biotransformation, the impact of heavy metals in soft water systems, the environmental toxicology of organotin compounds, oxidative stress in fish by environmental pollutants to effects by estrogenic substances in aquatic systems.




Water Pollution and Fish Physiology


Book Description

This book provides a concise synthesis of how toxic chemical pollutants affect physiological processes in teleost fish. This Second Edition of the well-received Water Pollution and Fish Physiology has been completely updated, and chapters have been added on immunology and acid toxicity. The emphasis, as in the first edition, is on understanding mechanisms of sublethal effects on fish and their responses to these environmental stressors. The first chapter covers the basic principles involved in understanding how fish respond, in general, to environmental alterations. Each subsequent chapter is devoted to a particular organ system or physiological function and begins with a short overview of normal physiology of that system/function. This is followed by a review of how various toxic chemicals may alter normal conditions in fish. Chapters covering environmental hypoxia, behavior, cellular enzymes, and acid toxicity are also included. The book closes with a discussion on the practical application of physiological and biochemical measurements of fish in water pollution control in research and regulatory settings.







Aquaculture Toxicology


Book Description

Aquaculture Toxicology is an essential resource of practical information that covers mechanisms of toxicity and their responses to toxic agents, including aspects of uptake, metabolism and excretion of toxicants in fish, crustaceans and mollusks. This is a reliable, up-to-date, "all inclusive reference guide that provides an understanding of toxicology information for the aquaculture industry. Written by respected international experts recognized in specific areas of toxicology, this book covers toxins at the environmental, cellular and molecular levels. It identifies areas where more research is needed to generate more knowledge to support a sustainable aquaculture industry, including pharmaceutical pollutants and microplastics. - Presents clinical information for the three major aquatic food animals (fish, crustaceans and mollusks) - Discusses commonly used chemicals in aquaculture and their effects on aquatic animals and the environment - Provides the latest advancements in the field of toxicity to facilitate fisheries and aquaculture research




Toxicology of Nanoparticles and Nanomaterials in Human, Terrestrial and Aquatic Systems


Book Description

Toxicology of Nanoparticles and Nanomaterials in Human, Terrestrial and Aquatic Systems An indispensable compendium detailing the toxicology of nanoparticles with a focus on mechanisms, emerging issues, and new approaches Toxicology of Nanoparticles and Nanomaterials in Human, Terrestrial and Aquatic Systems provides authoritative information on the toxicology of ultrafine and nanoparticulate matter that contaminate terrestrial or aquatic environments and present unique challenges in applied public health and toxicological research. Detailed chapters by a panel of world-renowned experts examine the complementary and dynamic interdependence of aquatic, terrestrial, and human systems and the toxicological impacts on exposure to engineered and manufactured nanoparticles and nanomaterials. Organized into four sections, the book opens with a thorough overview of the field, including known challenges and the necessity for current research activity. The second section describes terrestrial and aquatic systems and the ecotoxicological impact of nanomaterials, followed by critical analysis of the many human health effects of nanomaterials. The book concludes with an in-depth discussion of current gaps in knowledge, future directions, new approach methodologies, alternatives to animal models, and the emerging environmental threat from nanoplastics. Presenting case exemplars of the ecotoxicological impact of nanoparticles in aquatic and terrestrial systems, this important resource: Presents in-depth coverage of ecosafety, environmental behavior, fate and transport, interactive effects with other contaminants, and current challenges in soil nano-ecotoxicology Addresses rising concerns regarding air pollution and neurological disorders, and the roles played by the gastrointestinal system, the mucosal microbiome, and the immunotoxicology and vasculotoxicity of metal-based nanoparticles Provides detailed coverage of nanomaterial health effects from both animal and in vitro models, including the gut microbiome, innate immunity, neurological and cardiovascular impacts, mechanisms of action, and hazard characterization Analyzes key topics in ecological nanotoxicology such as environmental micro- and nano-plastic pollution and applied risk assessment Toxicology of Nanoparticles and Nanomaterials in Human, Terrestrial and Aquatic Systems is essential reading for toxicologists, applied biologists, ecotoxicologists, research scientists, medical professionals, regulators, and advanced students in fields such as public health, environmental ecotoxicology and medicine, immunotoxicology, neurotoxicology, cardiovascular and systems biology, hazard identification, and risk assessment.




Organic Pollutants


Book Description

This volume describes the identification of emerging organic pollutants, mainly from industrial sources, their associated toxicological threats, and the latest green methods and biotechnological solutions to abate harmful impacts on people and the environment. The chapters present reviews on current applied toxicology research, occupational health hazards and green remedial solutions for pollution control in terrestrial and aquatic environments, with the aim of raising public awareness of these issues and providing chemists, toxicologists and environmental scientists with the knowledge to combat organic pollutants through sustainable means. Readers will learn about the multi-dimensional applications of materials and processes which harvest energy out of environmental remediation technologies, as well as the roles of biotechnology and nanotechnology in addressing high pollutant load. Specific attention is paid to technologies that draw energy through wastewater remediation, as this covers the primary means by which organic pollutants are introduced into the environment from industry and other sources. The book will be of use to pollution control boards, industry regulators, and students and researchers in the fields of biotechnology, biomedical science, hydrology and water chemistry.




Environmental Toxicity of Nanomaterials


Book Description

Environmental Toxicity of Nanomaterials focuses on causes and prevention of environmental toxicity induced by various nanomaterials. In sixteen chapters it describes the basic principles, trends, challenges, and future directions of nanoecotoxicity. The future acceptance of nanomaterials in various industries depends on the impacts of nanomaterials on the environment and ecosystem. This book analyzes the safe utilization of nanotechnology so the tremendous prospect of nanotechnology can be achieved without harming either living beings or the environment. Environmental Toxicity of Nanomaterials introduces nanoecotoxicity, describes various factors affecting the toxicity of nanomaterials, discusses various factors that can impart nanoecotoxicity, reviews various studies in the area of nanoecotoxicity evaluation, and describes the safety and risk assessment of nanomaterials. In addition, the book discusses strategies for mitigating nanoecotoxicity. Lastly, the authors provide guidelines and protocols for nanotoxicity evaluation and discuss regulations for safety assessment of nanomaterials. In addition to environmental toxicologists, this book is aimed at policy makers, industry personnel, and doctoral and postdoctoral scholars.




The 50th Anniversary Issue of Fish Physiology


Book Description

The series "Fish Physiology" recently celebrated its 50th Anniversary. In total, the editors of the series have produced a total of 47 books (several volumes have two books) that contain almost 500 chapters since the inaugural volume published in 1969. The content of the "Fish Physiology" volumes has evolved over time. The initial volumes were devoted to understanding the basic mechanisms and principles of fish physiology, with a focus on a few model species and some application to natural environmental conditions. Then, as the field better understood mechanisms, the approach was broadened to not only delve deeper into system physiology (e.g., chapters in early volumes were expanded to become books), but interspecific differences in physiology were explored, permitting a more evolutionary framework. Finally, as interspecific physiological mechanisms were further resolved, it became possible to discuss physiology in light of a changing world. Thus, physiology can now inform on conservation, sustainability and management, as exemplified with the most recent volumes. This anniversary issue celebrates the series by highlighting some of the very important early work in the field that was published in the Series. In particular, we wished to (re)introduce new researchers to this research that has stood the test of time and that shaped the field. Each re-published chapter is preceded by a short review written by experts in the field to provide an overview/introduction of each selected chapter, discuss what is particularly noteworthy or important in the particular chapter, and discuss why in their opinion this chapter has become a classic in its own right and how it has inspired the field of fish physiology today? - Reviews written by experts in the field of some of the early influential chapters from the series "Fish Physiology" - Highlights how some of this early work in the series "Fish Physiology" has stood the test of time and shaped the field today - Reintroduces some of the early influential work in the series "Fish Physiology" to new researchers in the field