Fixed Point Theory for Lipschitzian-type Mappings with Applications


Book Description

In recent years, the fixed point theory of Lipschitzian-type mappings has rapidly grown into an important field of study in both pure and applied mathematics. It has become one of the most essential tools in nonlinear functional analysis. This self-contained book provides the first systematic presentation of Lipschitzian-type mappings in metric and Banach spaces. The first chapter covers some basic properties of metric and Banach spaces. Geometric considerations of underlying spaces play a prominent role in developing and understanding the theory. The next two chapters provide background in terms of convexity, smoothness and geometric coefficients of Banach spaces including duality mappings and metric projection mappings. This is followed by results on existence of fixed points, approximation of fixed points by iterative methods and strong convergence theorems. The final chapter explores several applicable problems arising in related fields. This book can be used as a textbook and as a reference for graduate students, researchers and applied mathematicians working in nonlinear functional analysis, operator theory, approximations by iteration theory, convexity and related geometric topics, and best approximation theory.




Fixed Point Theorems and Applications


Book Description

This book addresses fixed point theory, a fascinating and far-reaching field with applications in several areas of mathematics. The content is divided into two main parts. The first, which is more theoretical, develops the main abstract theorems on the existence and uniqueness of fixed points of maps. In turn, the second part focuses on applications, covering a large variety of significant results ranging from ordinary differential equations in Banach spaces, to partial differential equations, operator theory, functional analysis, measure theory, and game theory. A final section containing 50 problems, many of which include helpful hints, rounds out the coverage. Intended for Master’s and PhD students in Mathematics or, more generally, mathematically oriented subjects, the book is designed to be largely self-contained, although some mathematical background is needed: readers should be familiar with measure theory, Banach and Hilbert spaces, locally convex topological vector spaces and, in general, with linear functional analysis.




Background and Recent Developments of Metric Fixed Point Theory


Book Description

This book focusing on Metric fixed point theory is designed to provide an extensive understanding of the topic with the latest updates. It provides a good source of references, open questions and new approaches. While the book is principally addressed to graduate students, it is also intended to be useful to mathematicians, both pure and applied.




Banach Spaces and Their Applications in Analysis


Book Description

In recent years there has been a surge of profound new developments in various aspects of analysis whose connecting thread is the use of Banach space methods. Indeed, many problems seemingly far from the classical geometry of Banach spaces have been solved using Banach space techniques. This volume contains papers by participants of the conference "Banach Spaces and their Applications in Analysis", held in May 2006 at Miami University in Oxford, Ohio, in honor of Nigel Kalton's 60th birthday. In addition to research articles contributed by participants, the volume includes invited expository articles by principal speakers of the conference, who are leaders in their areas. These articles present overviews of new developments in each of the conference's main areas of emphasis, namely nonlinear theory, isomorphic theory of Banach spaces including connections with combinatorics and set theory, algebraic and homological methods in Banach spaces, approximation theory and algorithms in Banach spaces. This volume also contains an expository article about the deep and broad mathematical work of Nigel Kalton, written by his long time collaborator, Gilles Godefroy. Godefroy's article, and in fact the entire volume, illustrates the power and versatility of applications of Banach space methods and underlying connections between seemingly distant areas of analysis.




Fixed Point Theory and Variational Principles in Metric Spaces


Book Description

The book is designed for undergraduates, graduates, and researchers of mathematics studying fixed point theory or nonlinear analysis. Basic techniques and results of topics such as fixed point theory, set-valued analysis, variational principles, and equilibrium problems are presented in an understandable and thorough manner.




Applied Mathematics in Tunisia


Book Description

This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology. Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia. Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics. These proceedings aim to foster and develop further growth in all areas of applied mathematics.




Differential Equations


Book Description

The editor has incorporated contributions from a diverse group of leading researchers in the field of differential equations. This book aims to provide an overview of the current knowledge in the field of differential equations. The main subject areas are divided into general theory and applications. These include fixed point approach to solution existence of differential equations, existence theory of differential equations of arbitrary order, topological methods in the theory of ordinary differential equations, impulsive fractional differential equations with finite delay and integral boundary conditions, an extension of Massera's theorem for n-dimensional stochastic differential equations, phase portraits of cubic dynamic systems in a Poincare circle, differential equations arising from the three-variable Hermite polynomials and computation of their zeros and reproducing kernel method for differential equations. Applications include local discontinuous Galerkin method for nonlinear Ginzburg-Landau equation, general function method in transport boundary value problems of theory of elasticity and solution of nonlinear partial differential equations by new Laplace variational iteration method. Existence/uniqueness theory of differential equations is presented in this book with applications that will be of benefit to mathematicians, applied mathematicians and researchers in the field. The book is written primarily for those who have some knowledge of differential equations and mathematical analysis. The authors of each section bring a strong emphasis on theoretical foundations to the book.




Lights and Shadows on Generalizations in Fixed Point Theory


Book Description

Fixed point theory is a powerful tool in nonlinear analysis, with applications in fractional differential equations and other areas. The most prominent application/conclusion of this theory is the Banach contraction principal. The notion of invisible graphs, introduced here for the first time, will find applications in different areas of science. The book examines the classical techniques of this theory with a critical approach, along with the emergence of various generalizations in its evolution. Using the latest theories of the philosophy of science, the author aims to provide a philosophical explanation for the gaps in the fixed point theory and introduce the reader to profound mathematical-philosophical challenges.




Fixed Point Theory in Ordered Sets and Applications


Book Description

This monograph provides a unified and comprehensive treatment of an order-theoretic fixed point theory in partially ordered sets and its various useful interactions with topological structures. The material progresses systematically, by presenting the preliminaries before moving to more advanced topics. In the treatment of the applications a wide range of mathematical theories and methods from nonlinear analysis and integration theory are applied; an outline of which has been given an appendix chapter to make the book self-contained. Graduate students and researchers in nonlinear analysis, pure and applied mathematics, game theory and mathematical economics will find this book useful.