Flavoprotein Protocols


Book Description

As a scientist with an interest in proteins you will, at some time in your career, isolate an enzyme that turns out to be yellow—or perhaps you already have. Alternatively, you may identify a polypeptide sequence that is related to known flavin-containing proteins. This may, or may not, be your first encounter with flavoproteins. However, even if you are an old hand in the field, you may not have exploited the full range of experimental approaches applicable to the study of flavoproteins. We hope that Flavoprotein Protocols will encourage you to do so. In this volume we have sought to bring together a range of experimental methods of value to researchers with an interest in flavoproteins, whether or not these researchers have experience in this area. A broad range of techniques, from the everyday to the more specialized, is described by scientists who are experts in their fields and who have ext- sive practical experience with flavoproteins. The wide range of approaches, from wet chemistry to dry computation, has, as a consequence, demanded a range of formats. Where appropriate (particularly for analytical methods) the protocol described is laid out in easy-to-follow steps. In other cases (e. g. , the more advanced spectroscopies and computational methods) it is far more apt to describe the general approach and relevance of the methods. We hope this wide-ranging approach will sow the seeds of many future collaborations - tween laboratories and further our knowledge and understanding of how f- voproteins work.




New Approaches for Flavin Catalysis


Book Description

New Approaches for Flavin Catalysis, Volume 620, a new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Topics covered in this update include Anaerobiosis and Methods for Reduction, Reduction Potentials, Anaerobic Stopped-Flow, No Glove-Box, Anaerobic Stopped-Flow, in a Glove-Box, Chemical Quenching, Oxygen Reactions, Double-mixing Stopped-Flow, Kinetic Isotope Effects and Viscosity Effects, Heavy Enzymes Synthetic Flavins & Linear Free Energy Relationships, Vibrational Spectroscopy, Stark Spectroscopy, EPR and Related Methods, Molecular Dynamics, Phylogenetic Relationships/Superfamilies, O2 and Superoxide Analogs, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series - Updated release includes the latest information on New Approaches for Flavin Catalysis




FLAVINS and FLAVOPROTEINS 2011


Book Description

This book contains articles based on oral and poster presentations at the 17th International Symposium on Flavins and Flavoproteins, which was held July 24-29, 2011 at the University of California Berkeley in the USA. These triennial conferences highlight the latest advances in the field and the conference proceedings book serves both as documentation of the event and as a reference.




Chemokine Protocols


Book Description

The chemokines family of small proteins are involved in numerous b- logical processes ranging from hematopoiesis, angiogenesis, and basal l- kocyte trafficking to the extravasation and tissue infiltration of leukocytes in response to inflammatory agents, tissue damage, and bacterial or viral infection. Chemokines exert their effects through a family of seven G-protein coupled transmembrane receptors. Worldwide interest in the chemokine field surged dramatically early in 1996, with the finding that certain chemokine receptors were the elusive coreceptors, required along with CD4, for HIV infection. Today, though over 40 human chemokines have been described, the n- ber of chemokine receptors lags behind—only 17 human chemokine receptors have been identified so far. What has emerged over the years is that most chemokine receptors bind several distinct ligands, and indeed the majority of chemokines are able to bind to multiple chemokine receptors, explaining to some extent the apparent disparity in the numbers of chemokines and rec- tors. Yet in spite of the apparent redundancy in chemokine/chemokine rec- tor interactions, it is clear that in vivo, spatial, temporal, and indeed cell- and tissue-specific expression of both chemokines and their receptors are imp- tant factors in determining the precise nature of cellular infiltrates in phy- ological and pathological processes.




Chromatin Protocols


Book Description

More than 40 years after the discovery of the nucleosome as the fun- mental unit of chromatin, the multifaceted problem of how variations in ch- matin structure affect the activity of the eukaryotic genome has not been solved. However, during the past few years research on chromatin structure and fu- tion has gained considerable momentum, and impressive progress has been made at the level of concept development as well as filling in crucial detail. The structure of the nucleosome has been visualized at unprecedented reso- tion. Powerful multisubunit enzymes have been identified that alter histone/ DNA interactions in ways that expose regulatory sequences to factors initi- ing and regulating such nuclear processes as transcription. Though the imp- tance of posttranslational modifications of histones, notably their acetylation, has long been known, the finding that a number of bona fide regulators increase transcription by acetylating nucleosomes has lent new support to the old idea that the process of gene regulation is intimately related to the nature of the chromatin environment. A wealth of nonhistone proteins contribute to a continuum of structures with distinct biochemical properties and varying degrees of DNA condensation. Perhaps the most important conclusion from a large number of studies is a fresh appreciation of the dynamic nature of chromatin structure, the built-in flexibility providing the basis for regulation.




Chaperonin Protocols


Book Description




Eicosanoid Protocols


Book Description

In Eicosanoid Protocols, Elias A. Lianos and a panel of hands-on experts present cutting-edge methods for the study of eicosanoids, including prostaglandins, thromboxanes, and leukotrienes. The readily reproducible methods described hereconcentrate on studying the regulation of expression and function of enzymes, particularly cyclooxygenase (and its two isoforms), phospholipase A2, and lipoxygenases involved in the synthesis of established eicosanoids. Additional chapters are devoted to the characterization and distribution of the thromboxane A2 receptor in tissues and the biological roles of novel eicosanoids. Timely and authoritative, the methods in this book will help their users in exploring the pathobiology of inflammation. Eicosanoid Protocols offers new and established researchers powerful, state-of-the-art tools to probe the regulation and function of eicosanoids.




Flavins


Book Description

Flavins and flavoproteins are a widely investigated and highly versatile group of compounds. Participation of these compounds in photochemistry and photobiology processes are of particular importance in the fields of biology, chemistry and medicine. Written by leading experts in the field each section of the book includes a historical overview of the subject, state of the art developments and future perspectives. Flavins: Photochemistry and Photobiology begins with the properties and applications of flavins, including their photochemistry in aqueous and organic solutions. Subsequent sections discuss riboflavin as a visible light sensitizer in the photo degradation of drugs, antiviral and antibacterial effects, the role of flavins in light induced toxicity and blue light initiated DNA repair by photolyase. Finally there are sections on the flavin based photoreceptors in plants, bacteria and eukaryotic photosynthetic flagelettes. This book brings together leading experts with a unique interdisciplinary emphasis, to provide an authoritative resource on flavins and their role in photochemistry and photobiology.




Neuropeptide Y Protocols


Book Description

The observation that neuropeptide Y (NPY) is the most abundant peptide present in the mammalian nervous system and the finding that it elicits the most powerful orexigenic signal have led to active investigations of the properties of the NPY family of hormones, including peptide YY (PYY) and pancreatic polypeptide (PP). Nearly two decades of research have led to the identification of several NPY receptor subtypes and the development of useful receptor selective ligands. Moreover, these investigations have imp- cated NPY in the pathophysiology of a number of diseases, including feeding disorders, seizures, memory loss, anxiety, depression, and heart failure. Vigorous efforts are therefore continuing, not only to understand the bioche- cal aspects of NPY actions, but also toward developing NPY-based treatments for a variety of disorders. To facilitate these efforts, it was decided to produce the first handbook on NPY research techniques as part of the Methods in Molecular Biology Series. In compiling Neuropeptide Y Protocols, I have gathered contributions on techniques considered critical for the advancement of the NPY field from experts in various disciplines. Each chapter starts with a brief introduction, with Materials and Methods sections following. The latter sections are presented in an easy to follow step-by-step format. The last section of the chapter, Notes, highlights pitfalls and the maneuvers employed to overcome them. This information, not usually disseminated in standard research pub- cations, may prove extremely useful for investigators employing these te- niques in NYP research.




Protein Lipidation Protocols


Book Description

In Protein Lipidation Protocols, Michael Gelb brings together a collection of readily reproducible techniques for studying protein lipidation, the covalent attachment of lipids to proteins. These cutting-edge methods-many never published before in a "hands-on" format-deal with glycosyl phosphatidylinositol (GPI)-containing compounds, protein fatty acylation, and protein prenylation. Included are novel techniques for determining the chemical structure of GPI-anchors, for radiolabeling the prenyl groups of protein in eukaryotic cells, a tool for developing inhibitors of the protein farnesyltransferase, and for an exciting lysosomal enzyme that cleaves fatty acyl groups from proteins, the first fatty acylase discovered. Protein Lipidation Protocols offers biochemists, cell and molecular biologists, medicinal chemists, and pharmaceutical researchers state-of-the-art tools for understanding the complex biochemistry of protein lipidation, as well as catalyzing the development of many important new biopharmaceuticals, including anticancer drugs.