Flexible and Stretchable Medical Devices


Book Description

The book introduces flexible and stretchable wearable electronic systems and covers in detail the technologies and materials required for healthcare and medical applications. A team of excellent authors gives an overview of currently available flexible devices and thoroughly describes their physical mechanisms that enable sensing human conditions. In dedicated chapters, crucial components needed to realize flexible and wearable devices are discussed which include transistors and sensors and deal with memory, data handling and display. Additionally, suitable power sources based on photovoltaics, thermoelectric energy and supercapacitors are reviewed. A special chapter treats implantable flexible sensors for neural recording. The book editor concludes with a perspective on this rapidly developing field which is expected to have a great impact on healthcare in the 21st century.




Opto-VLSI Devices and Circuits for Biomedical and Healthcare Applications


Book Description

The text comprehensively discusses the latest Opto-VLSI devices and circuits useful for healthcare and biomedical applications. It further emphasizes the importance of smart technologies such as artificial intelligence, machine learning, and the internet of things for the biomedical and healthcare industries. Discusses advanced concepts in the field of electro-optics devices for medical applications. Presents optimization techniques including logical effort, particle swarm optimization and genetic algorithm to design Opto-VLSI devices and circuits. Showcases the concepts of artificial intelligence and machine learning for smart medical devices and data auto-collection for distance treatment. Covers advanced Opto-VLSI devices including a field-effect transistor and optical sensors, spintronic and photonic devices. Highlights application of flexible electronics in health monitoring and artificial intelligence integration for better medical devices. The text presents the advances in the fields of optics and VLSI and their applicability in diverse areas including biomedical engineering and the healthcare sector. It covers important topics such as FET biosensors, optical biosensors and advanced optical materials. It further showcases the significance of smart technologies such as artificial intelligence, machine learning and the internet of things for the biomedical and healthcare industries. It will serve as an ideal design book for senior undergraduate, graduate students, and academic researchers in the fields including electrical engineering, electronics and communication engineering, computer engineering and biomedical engineering.




Nanosensors for Futuristic Smart and Intelligent Healthcare Systems


Book Description

The book, Nanosensors for Futuristic Smart and Intelligent Healthcare Systems, presents a treatise on nanosensors technology including wearables, implantable devices and wireless tools. The recent pandemic (COVID-19) has changed the behaviour of people towards diagnosis of infectious diseases and monitoring remote patient health status in real-time. The main focus of this book is the basic concepts of nanomaterials and sensing paradigms for medical devices based on nanosensor technology. The book will be valuable to researchers, engineers and scientists interested in the field of healthcare for monitoring health status in real-time.




Wearable Biosensing in Medicine and Healthcare


Book Description

This book contains chapters on wearable biomedical sensors and their assistive technologies for promoting behavioral change in medical and health care. Part I reviews several wearable biomedical sensors based on biocompatible materials and nano and micro-electromechanical systems (MEMS) technologies in the medical and dental fields. Part II introduces the latest approaches to wearable biosensing using unique devices for various skin targets such as sweat, interstitial fluid, and transcutaneous gases. Part III presents technologies supporting wearable sensors, including soft and flexible materials, manufacturing methods, skin volatile-marker imaging, and energy harvesting devices. This book is intended for graduate students, academic researchers, and professors that work in medical and healthcare research fields, as well as industry professionals involved in the development of wearable and flexible sensing devices and measurement systems for human bio/chemical sensing, medical monitoring, and healthcare services, and for medical professionals and government officials who are driving behavior change in health care.




Biosensors for Medical Applications


Book Description

Biomedical sensors are an essential tool in the detection and monitoring of a wide range of medical conditions from cancer to Parkinson's disease. Biosensors for medical applications provides a comprehensive review of established, cutting edge and future trends in biomedical sensors and their applications.Part one focuses on key principles and transduction approaches, reviewing electrochemical, piezoelectric and nano-sized biosensors. Impedence interrogated affinity biosensors for medical applications and practical applications of enzyme biosensors are explored, before part two goes on to review specific medical applications. Biosensors for DNA and RNA detection and characterization, disease biomarker detection, and the use of affibodies as an alternative to antibodies in cancer marker biosensors are investigated, along with biosensors for drug testing and discovery, non-invasive measurements, and wearable biosensors for medical applications.With its distinguished editor and international team of expert contributors, Biosensors for medical applications is an essential guide for all those involved in the research, design, production and use of medical biosensors. - Provides a comprehensive review of established, cutting edge and future trends in biomedical sensors and their applications - Examines key principles and transduction approaches, reviewing electrochemical, piezoelectric and nano-sized biosensors - Reviews biosensors for DNA and RNA detection and characterisation, disease biomarker detection, and the use of affibodies as an alternative to antibodies in cancer marker biosensors




Smart Biosensors in Medical Care


Book Description

Smart Biosensors in Medical Care discusses the characteristics of biosensors and their potential applications in healthcare. This book is aimed at professionals, scientists and engineers who are interested in integrating biosensors into medical care systems for patients. It also provides fundamental and foundational knowledge for undergraduate and post graduate students. The book presents a comprehensive view of up-to-date requirements in hardware and communication, offers future perspectives on next-generation medical care systems, and includes global case studies of recent system operations in healthcare. Sections cover smart biosensors, such as wearable, implantable, patch based, and enzyme based for medical care. Advances in ubiquitous sensing applications for healthcare is a series which covers new systems based on ubiquitous sensing for healthcare (USH). Volumes in this series cover a wide range of interdisciplinary areas, including wireless sensors networks, wireless body area networks, Big data, Internet-of-Things (IoT), security, monitoring, real time data collection, data management, systems design/analysis, and much more. - Covers the basics of biosensor based medical care data analysis and management - Discusses data transmission techniques, presenting applications with extensive studies for biosensor based medical healthcare systems - Offers solutions to the challenges of designing biosensor based medical healthcare systems




BioSensing, Theranostics, and Medical Devices


Book Description

This book provides up-to-date information on the prototypes used to develop medical devices and explains the principles of biosensing and theranostics. It also discusses the development of biosensor and application-orientated design of medical devices. In addition to summarizing the clinical validation of the developed techniques and devices and the regulatory steps involved in their commercialization, the book highlights the latest research and translational technologies toward the development of point-of-care devices in the health care. Lastly, it explores the current opportunities, challenges and provides troubleshooting on the use of biosensors in precision medicine. The book is helpful for researchers and medical professionals working in the field of clinical theranostics, and medical-device development wanting to gain a better understanding into the principles and processes involved in the development of biosensors.




Smart, Connected, and Portable Biosensors and Bioelectronics for Advancing Human Healthcare, Disease Diagnosis, and Therapeutics


Book Description

Research and development related to smart, connected, and portable biosensors and bioelectronics have been game changing in the fields of diagnostics and health management. Unlike conventional biosensors, these devices allow rapid, accurate, and on-site detection of biomarkers, which helps to prevent disease spread by the source control. This reprint contains experimental/computational studies and systematic reviews that report advances towards addressing current challenges and the future scope of the field of portable biosensors and bioelectronics.




Sensor Technologies


Book Description

Sensor Technologies: Healthcare, Wellness and Environmental Applications explores the key aspects of sensor technologies, covering wired, wireless, and discrete sensors for the specific application domains of healthcare, wellness and environmental sensing. It discusses the social, regulatory, and design considerations specific to these domains. The book provides an application-based approach using real-world examples to illustrate the application of sensor technologies in a practical and experiential manner. The book guides the reader from the formulation of the research question, through the design and validation process, to the deployment and management phase of sensor applications. The processes and examples used in the book are primarily based on research carried out by Intel or joint academic research programs. “Sensor Technologies: Healthcare, Wellness and Environmental Applications provides an extensive overview of sensing technologies and their applications in healthcare, wellness, and environmental monitoring. From sensor hardware to system applications and case studies, this book gives readers an in-depth understanding of the technologies and how they can be applied. I would highly recommend it to students or researchers who are interested in wireless sensing technologies and the associated applications.” Dr. Benny Lo Lecturer, The Hamlyn Centre, Imperial College of London “This timely addition to the literature on sensors covers the broad complexity of sensing, sensor types, and the vast range of existing and emerging applications in a very clearly written and accessible manner. It is particularly good at capturing the exciting possibilities that will occur as sensor networks merge with cloud-based ‘big data’ analytics to provide a host of new applications that will impact directly on the individual in ways we cannot fully predict at present. It really brings this home through the use of carefully chosen case studies that bring the overwhelming concept of 'big data' down to the personal level of individual life and health.” Dermot Diamond Director, National Centre for Sensor Research, Principal Investigator, CLARITY Centre for Sensor Web Technologies, Dublin City University "Sensor Technologies: Healthcare, Wellness and Environmental Applications takes the reader on an end-to-end journey of sensor technologies, covering the fundamentals from an engineering perspective, introducing how the data gleaned can be both processed and visualized, in addition to offering exemplar case studies in a number of application domains. It is a must-read for those studying any undergraduate course that involves sensor technologies. It also provides a thorough foundation for those involved in the research and development of applied sensor systems. I highly recommend it to any engineer who wishes to broaden their knowledge in this area!" Chris Nugent Professor of Biomedical Engineering, University of Ulster What you’ll learnThe relevant sensing approaches and the hardware and software components required to capture and interpret sensor data. The importance of regulations governing medical devices. A design methodology for developing and deploying successful home- and community-based technologies, supported by relevant case studies. Health, wellness, and environmental sensing applications and how they work. The challenges and future directions of sensing in these domains. Who this book is for Sensor Technologies: Healthcare, Wellness and Environmental Applications is targeted at clinical and technical researchers, engineers, and students who want to understand the current state of the art in sensor applications in these domains. The reader gains a full awareness of the key technical and non-technical challenges that must be addressed in the development of successful end-to-end sensor applications. Real-world examples help give the reader practical insights into the successful development, deployment, and management of sensor applications. The reader will also develop an understanding of the personal, social, and ethical impact of sensor applications, now and in the future. Table of ContentsChapter One: Introduction Chapter Goal: Reader should understand the key challenges and drivers for sensor application development. The reader should also understand how sensor technologies can play a role in addressing some of the key challenges facing global society in the short to medium term. 1. Book overview 2. Drivers for Sensor Applications (Infrastructure Growth in Developing Countries, Advances in Energy Harvesting, New Applications, Cost reduction, Real-time monitoring of situations to avoid unplanned downtime, Security (personal and national), the internet of things). 3. Challenges for Sensor Applications (Power, Efficient Operation in Harsh Environments, Number of Deployable Nodes, Safety and Regulations, High Cost of Installation, Security and Reliability, sensor management) 4. Global Megatrends and the opportunities for sensing technologies o Water and Food Constraints o Aging Demographics o Public Health o Pandemics o Security Chapter 2: Sensing and Sensor Fundamentals Chapter Goal: Reader should understand existing sensor technologies, which can be used in healthcare, wellness, and environmental domains. They should also understand the role of smart sensors and smart phones as mobile sensing platforms and aggregators. 1. Sensing Modalities (Mechanical, MEMS, Optical, ISFET, μTAS) 2. Sensing Domains (Air, Water, Noise, Bacterial, Chemical, Kinematic, DNA, Physiological) 3. Functional Characterisation of Sensors o Communication methods – discrete, wired, wireless o Smart Sensors and Sensor Platforms § MSP430 (SHIMMER and telosB motes) § ATmega § PIC 4. Smart Phones as mobile sensor platforms 5. Selecting and specifying sensors Chapter 3 Key Sensor Technology Components – Hardware and Software Overview Chapter Goal: Reader should have a high level understanding of the key hardware and software components, which are necessary for the development of sensors systems and why technologies are selected for specific applications. 1. Overview – Sensor systems 2. MCU’s (TI MSP430, ATmega, PIC) a. ADCs b. Interrupts c. Real-time Clocks 3. Sensor Interfaces a. Digital b. Analog c. I2C 4. Communications – wired and wireless interfaces RS232/485, USB, Ethernet, FieldbusProprietary Short Range Wireless Protocols (e.g. ANT, BodyLAN, Sensium)Standard Short Range Protocols i. IEEE 802.15.6 ii. Bluetooth/Smart Bluetooth iii. 802.15.4 iv. UWB Medium Range i. Wi-Fi 5. Data storage (EEPROM, sd card, data forwarding) 6. Power management and Energy Harvesting 7. Operating Systems and Software Development Environments (SDK’s) Chapter 4 Sensor Network Architectures Chapter Goal: Reader should understand the various approaches to the design of sensor network architectures; scaling from body worn systems, to ambient sensing, to city-scale deployments. The reader should also understand the advantages and disadvantages of current and evolving sensor network architectures. 1. Sensor network architectures o Discrete Sensor o Sensor to aggregator o PAN/WPAN/smart clothing o Pervasive/Ambient sensor networks o Wide area networks (city-wide, country wide) 2. Challenges in developing and deploying sensor networks 3. Current and Proposed Solutions o Remote sensor management o Edge Processing o Power harvesting o New communication standards Chapter 5: Adding Vibrancy to Sensor Data Chapter Goal: Reader should understand the various methods to interpret and display sensor data to the user. They will understand the importance of creating a data analysis plan from the outset, and the different types of data analysis throughout the application stack. 1. Data Literacy – How can we intuitively answer questions with sensor data and contextualise answers 2. Data Quality a. Calibration b. Trust and Repudiation 3. Sensor Fusion – combining sensory data from disparate sources 4. Data Mining 5. Data Visualisation 6. Openness, data integration, virtual sensors 7. Exploiting the power of the cloud Chapter 6: Regulation and Standards Chapter Goal: Reader should understand the key technologies, which impact or influence the development of sensor deployment and applications including the emerging standards and regulatory considerations. 1. Regulatory Standards (US, EU, Japan) : why, which, and how standards impact your application 2. Regulatory Issues: Certification 3. Smartphones Considerations o Privacy and data security 4. Standards Bodies and Industry Groups o Continua Healthcare Alliance o ISO/IEEE 11073 5. Wearable Wireless Health Communication Standards Chapter 7: Biosensing in Everyday Life – Driving Biocontextual Aware Computing Chapter Goal: Reader should understand the social relationships that create opportunities and barriers for widespread, consumer-based biosensing. The reader should understand how the social world is shifting from sensor technologies of “should” to sensor technologies of “could” to facilitate new understandings of health and wellness and drive new methods and practices of personal data sharing. 1. Data Security and Ownership - Sharing and Managing Personal Data 2. Game Changing Pressure for Affordable Healthcare 3. Continuous, Personal Data is Improving Lives 4. Emerging Tech-Empowered Citizens 5. Sensing for Self-Discovery, Culture and Play 6. User feedback/Supporting sustainable human behaviours – leveraging the gaming culture Chapter 8: Development and Deployment of Sensor Technologies for Home and Community Settings Chapter Goal: Reader should understand how to design a sensor deployment for a home or community. The chapter informs the reader how to formulate the research question the deployment will address, how to develop prototypes, and manage and deploy them successful. The chapter will finish with exemplar case studies of real world sensor deployments. Study Design – The Right QuestionHome Deployment ElementsHome Deployment ManagementThe Prototyping Design ProcessCase Studies Chapter 9: Body Worn and Ambient Sensor Applications for Assessment, Monitoring, and Diagnostics Chapter Goal: Reader should at the end of this chapter have an understanding of the key characteristics of how body worn and ambient sensor applications, and how they vary according to the domain in which they are deployed. The reader will be presented with the key challenges faced in each domain, and emerging solutions for these challenges. 1. Drivers and Inhibitors (Incidence of chronic diseases, aging demographics, Adjusting provider compensation, prevention, medical work practice changes) 2. Hospital based sensing for assessment and diagnosis 3. Supervised Assessment and Monitoring in Community Settings 4. Home Based Applications o Clinical grade sensing for patient monitoring o Body worn sensing (e.g. PERS) for monitoring and alerting o Passive sensing for monitoring and alerting (e.g. ADL’s) 5. Key challenges Chapter 10: Wellness, Fitness and Lifestyle Chapter Goal: Reader should understand the key trends in how people use body worn sensors to manage their fitness and wellbeing. Key applications include: sensors for measuring activities in sports performance, activity/weight management and sleep tracking, 1. Drivers and Inhibitors 2. Sports and fitness applications (running, walking cycling, field sports) § Vital signs and physiological parameters § Fitness gaming – Wii Fit, Kinect § muscle movement, body stress levels, speed, distance, location § Fitness Statistics and Analysis 3. Outdoor Activities o Pressure (mountaineer and paragliding) o GPS (hiking, cycling, golf) 4. Obesity and weight management 5. Sleep o Baby Monitoring o Sleep Quality – health and social impacts o Sleep Apnoea Chapter 11: Environmental Monitoring for Health and Wellness Chapter Goal: Reader should understand how sensors and sensor networks are used for environmental monitoring, one of the key emerging applications domains. Apart from disaster monitoring, sensing also has the potential for air quality, weather monitoring, pollution etc.; with benefits for both urban and rural dwellers. 1. Drivers and Inhibitors o Correlations to health impacts 2. Home Sensing o Carbon Monoxide o Smoke Detectors o Passive Infrared (PIR) o Temperature o Sound o Sustainable Living 3. Smart Environments 4. Environmental Parameters (Noise, Water, Bacteria, Air Quality, Radiation, Urban Heat Islands) 5. Weather - Exceptional Event and Disaster Management Intelligence Chapter 12: Conclusions and Future Directions Chapter Goal: Reader should understand the key conclusions that the authors have outlined in the previous chapters. The reader should also gain an understanding of the key trends which will affect future sensor applications and how people will utilise these novel applications in their everyday lives. 1. Summary of the overall conclusions 2. Future Directions for Sensing o Use Centred Healthcare o Citizen centric sensing o Influence of urbanisation on health, wellness and lifestyle choices. o Sustainable human behaviour change