Flexible Carbon-based Electronics


Book Description

This third volume in the Advanced Nanocarbon Materials series covers the topic of flexible electronics both from a materials and an applications perspective. Comprehensive in its scope, the monograph examines organic, inorganic and composite materials with a section devoted to carbon-based materials with a special focus on the generation and properties of 2D materials. It also presents carbon modifications and derivatives, such as carbon nanotubes, graphene oxide and diamonds. In terms of the topical applications covered these include, but are not limited to, flexible displays, organic electronics, transistors, integrated circuits, semiconductors and solar cells. These offer perspectives for today?s energy and healthcare challenges, such as electrochemical energy storage and wearable devices. Finally, a section on fundamental properties and characterization approaches of flexible electronics rounds off the book. Each contribution points out the importance of the structure-function relationship for the target-oriented fabrication of electronic devices, enabling the design of complex components.




Carbon Based Electronic Devices


Book Description

For more than 50 years, silicon has dominated the electronics industry. However, this growth will come to an end, due to resources limitations. Thus, research developments need to focus to alternative materials, with higher performance and better functionality. Current research achievements have indicated that carbon is one of the promising candidates for its exploitation in the electronics industry. Whereas the physical properties of graphite and diamond have been investigated for many years, the potential for electronic applications of other allotropes of carbon (fullerenes, carbon nanotubes, carbon nanofibres, carbon films, carbon balls and beads, carbon fibers, etc), has only been appreciated relatively recently. Carbon-based materials offer a number of exciting possibilities for new applications of electronic devices, due to their unique thermal and electrical properties. However, the success of carbon-based electronics depends on the rapid progress of the fabrication, doping and manipulation techniques. In this Special Issue, we focus on both insights and advancements in carbon-based electronics. We will also cover various topics ranging from synthesis, functionalisation, and characterisation of carbon-based materials, for their use in electronic devices, including advanced manufacturing techniques, such as 3D printing, ink-jet printing, spray-gun technique, etc.




Flexible Electronics: From Materials To Devices


Book Description

This book provides a comprehensive overview of the recent development of flexible electronics. This is a fast evolving research field and tremendous progress has been made in the past decade. In this book, new material development and novel flexible device, circuit design, fabrication and characterizations will be introduced. Particularly, recent progress of nanomaterials, including carbon nanotubes, graphene, semiconductor nanowires, nanofibers, for flexible electronic applications, assembly of nanomaterials for large scale device and circuitry, flexible energy devices, such as solar cells and batteries, etc, will be introduced. And through reviewing these cutting edge research, the readers will be able to see the key advantages and challenges of flexible electronics both from material and device perspectives, as well as identify future directions of the field.




Flexible and Stretchable Medical Devices


Book Description

The book introduces flexible and stretchable wearable electronic systems and covers in detail the technologies and materials required for healthcare and medical applications. A team of excellent authors gives an overview of currently available flexible devices and thoroughly describes their physical mechanisms that enable sensing human conditions. In dedicated chapters, crucial components needed to realize flexible and wearable devices are discussed which include transistors and sensors and deal with memory, data handling and display. Additionally, suitable power sources based on photovoltaics, thermoelectric energy and supercapacitors are reviewed. A special chapter treats implantable flexible sensors for neural recording. The book editor concludes with a perspective on this rapidly developing field which is expected to have a great impact on healthcare in the 21st century.




Carbon Nanotube Electronics


Book Description

This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.




Carbon-Based Electronics


Book Description

Discovery of one-dimensional material carbon nanotubes in 1991 by the Japanese physicist Dr. Sumio Iijima has resulted in voluminous research in the field of carbon nanotubes for numerous applications, including possible replacement of silicon used in the fabrication of CMOS chips. One interesting feature of carbon nanotubes is that these can be me







Carbon for Micro and Nano Devices


Book Description

Micro and nano devices are an integral part of modern technology. To address the requirements of the state-of-the-art technology, topics are selected from both chip-based and flexible electronics. A wide range of carbon materials including graphene, carbon nanotube, glass-like carbon, porous carbon, carbon black, graphite, carbon nanofiber, laser-patterned carbon and heteroatom containing carbon are covered. This goal is to elucidate fundamental carbon material science along with compatible micro- and nanofabrication techniques. Real-life example of sensors, energy storage and generation devices, MEMS, NEMS and implantable bioelectronics enable visualization of the outcome of described processes. Students will also benefit from the attractive aspects of carbon science explained in simple terms. Hybridization, allotrope classification and microstructural models are presented with a whole new outlook. Discussions on less-studied, hypothetical and undiscovered carbon forms render the contents futuristic and highly appealing.




Applications of Carbon Nanotubes


Book Description

The discovery of carbon nanotubes has opened new windows for numerous applications in many disciplines of nanoscience and nanotechnology. Carbon nanotubes consist of graphene sheets in the form of sp2 hybridized carbon atoms. These materials have gained the interest of researchers from various disciplines due to their fascinating physico-chemical properties. This book describes the applications of carbon nanotubes in various areas including environmental science such as remediation and speciation, water research, medicine including sensors, targeted drug delivery and therapeutics. The application of carbon nanotubes in waste water research which includes organic, inorganic and microbial pollutants is also discussed as is its applications in material science and polymer science.




Nanoporous Carbons for Soft and Flexible Energy Devices


Book Description

This book provides an interesting snapshot of new research within the fields of flexible and soft devices which use porous carbon-based materials. The increase in demand for soft and flexible electronics, electrochemical energy storage/conversion systems, piezoresistive pressure sensors has promoted the development of new strategies for the synthesis and integration of nanoporous carbon (NPC) into flexible and soft polymers and inorganic textures. The structural properties of such NPC materials combined with their mechanical, conductive and catalytic properties, show promising results for the technology they are designed for, which can be useful solutions in many other disciplines. An in-depth discussion of the use of NPC materials in different energy devices is provided in every chapter, while at the same time the knowledge of the reader on the various applications where these materials can be used will be broadened. This book sheds new light on nanoporous carbon-based materials and will be of great interest to graduate students and professionals working in this field.