Separation of Flow


Book Description

Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation. Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapters consider the study of flow separation on the two-dimensional body, flow separation on three-dimensional body shape and particularly on bodies of revolution. This book discusses as well the analytical solutions of the unsteady flow separation. The final chapter deals with the purpose of separation flow control to raise efficiency or to enhance the performance of vehicles and fluid machineries involving various engineering applications. This book is a valuable resource for engineers.




Advances in Effective Flow Separation Control for Aircraft Drag Reduction


Book Description

This book presents the results of a European-Chinese collaborative research project, Manipulation of Reynolds Stress for Separation Control and Drag Reduction (MARS), including an analysis and discussion of the effects of a number of active flow control devices on the discrete dynamic components of the turbulent shear layers and Reynolds stress. From an application point of view, it provides a positive and necessary step to control individual structures that are larger in scale and lower in frequency compared to the richness of the temporal and spatial scales in turbulent separated flows.




High Speed Flow Separation Ahead of Finite Span Steps


Book Description

Detailed surface heat transfer data, oil flow, and schlieren photographs are presented for high speed flow separation ahead of finite span, forward facing steps on flat plates. Step spans were varied from three to ten times as large as the step height, and the step heights are three to four times larger than the undisturbed turbulent boundary layer thickness. Reynolds numbers, based on plate length, were approximately 15 million for both Mach 4.75 and Mach 5.04 local undisturbed flows over the flat plate surface. For these test conditions, the maximum extent of separation ahead of the step is approximately 4.4 times as large as the step height independent of step span, and peak heating rates were measured that are more than six to eight times larger than the undisturbed flow heating rates. Peak heating on the plate surface occurs slightly upstream and approximately 1/2 step height inboard of the outboard sides of the steps; the increase in peak heat transfer coefficients over the undisturbed flow values decreases with increasing step span. In addition to presenting the detailed surface heat transfer data, a plausible theoretical analysis is presented for calculating the region of turbulent boundary layer separation ahead of these finite span steps.




Physics of Separated Flows — Numerical, Experimental, and Theoretical Aspects


Book Description

This volume contains 37 contributions in which the research work is summarized which has been carried out between 1984 and 1990 in the Priority Research Program "Physik abgeloster Stromungen" of the Deutsche Forschungsgemeinschaft (DFG, German Research Society). The aim of the Priority Research Program was the inten sive research of the whole range of phenomena associated with separated flows. Physi cal models as well as prediction methods had to be developed based on detailed experi mental investigations. It was in accordance with the main concept of the research program that scientists working on problems of separated flows in different technical areas of application participated in this program. The following fields have been represented in the program: aerodynamics of wings and bodies, aerodynamics of auto mobiles, turbomachinery, ship hydrodynamics, hydraulics, internal flows, heat exchan gers, bio-fluid-dynamics, aerodynamics of buildings and structures. In order to concentrate on problems common in all those areas the emphasis of the program was on basic research dealing with generic geometric configurations showing the fundamental physical phenomena of separated flows. The engagement and enthusiasm of all participating scientists are highly appreciated. The program was organized such that all researchers met once a year to report on the progress of their work. Special thanks ought to go to Prof. E. A. Muller (Gottingen), Prof. H. Oertel jun. (Braunschweig), Dr. W. Schmidt (Dornier), Dr. H. -W. Stock (Dornier) and Dr. B. Wagner (Dornier), who had the functions of referees on those annual meetings.




Twenty-Third Symposium on Naval Hydrodynamics


Book Description

"Vive la Revolution!" was the theme of the Twenty-Third Symposium on Naval Hydrodynamics held in Val de Reuil, France, from September 17-22, 2000 as more than 140 experts in ship design, construction, and operation came together to exchange naval research developments. The forum encouraged both formal and informal discussion of presented papers, and the occasion provides an opportunity for direct communication between international peers. This book includes sixty-three papers presented at the symposium which was organized jointly by the Office of Naval Research, the National Research Council (Naval Studies Board), and the Bassin d'Essais des Carènes. This book includes the ten topical areas discussed at the symposium: wave-induced motions and loads, hydrodynamics in ship design, propulsor hydrodynamics and hydroacoustics, CFD validation, viscous ship hydrodynamics, cavitation and bubbly flow, wave hydrodynamics, wake dynamics, shallow water hydrodynamics, and fluid dynamics in the naval context.




Hypersonic-turbulent Boundary-layer Separation Over a Cone-cylinder-flare Configuration


Book Description

Results of a study of hypersonic-turbulent boundary-layer separation over axisymmetric bodies are presented. Pressure, heat-transfer and flow visualization data were obtained for a cone-cylinder-flare configuration. The experimental data were correlated with a theoretical prediction. (Author).







Cleaner Treatment Technologies and Productions in The Energy Industry, 2nd edition


Book Description

s the rapid development of the world's economy brought serious environmental problems, the economy must accelerate industrial structure adjustment and development mode transformation to achieve sustainable development. A cleaner production mode based on cleaner technology is a crucial way to solve the conflict between economic growth and environmental protection effectively. In essence, cleaner production is a kind of production mode in which the environmental strategy of overall prevention is adopted for the production process to reduce or eliminate their possible harm to human beings and the environment while fully meeting human needs and maximizing social and economic benefits. Fossil energy and renewable energy have promoted the development of many emerging industries, such as the automobile industry, aerospace technology, modern production and processing, and modern transportation industry, and preventing waste production while increasing efficiencies in the uses of energy is a crucial issue. Specific measures include: • Using clean energy and raw materials; • Adopting advanced technology and equipment; • Comprehensive utilization; • Reducing pollution from the source; • Improving utilization efficiency; • Reducing or avoiding the generation and emission of pollutants in the process of production. This Research Topic aims to report the most important and latest technological advances in cleaner treatment technologies of fossil energy (such as oil and natural gas) and renewable energy (such as hydrogen energy and geothermal energy) and serves as a platform for addressing and discussing theoretical and practical cleaner production.







NASA Technical Paper


Book Description