Low Reynolds Number Aerodynamics


Book Description

Current interest in a variety of low Reynolds number applications has focused attention on the design and evaluation of efficient airfoil sections at chord Reynolds numbers from about 100,000 to about 1,000,000. These applications include remotely piloted vehicles (RPVs) at high altitudes, sailplanes, ultra-light man-carrying/man powered aircraft, mini-RPVs at low altitudes and wind turbines/propellers. The purpose of this conference was to bring together those researchers who have been active in areas closely related to this subject. All of the papers presented are research type papers. Main topics are: Airfoil Design and Analysis, Computational Studies, Stability and Transition, Laminar Separation Bubble, Steady and Unsteady Wind Tunnel Experiments and Flight Experiments.







An Introduction to Flapping Wing Aerodynamics


Book Description

For anyone interested in the aerodynamics, structural dynamics and flight dynamics of small birds, bats, insects and air vehicles (MAVs).




Low-Speed Aerodynamics


Book Description

Low-speed aerodynamics is important in the design and operation of aircraft flying at low Mach number, and ground and marine vehicles. This 2001 book offers a modern treatment of the subject, both the theory of inviscid, incompressible, and irrotational aerodynamics and the computational techniques now available to solve complex problems. A unique feature of the text is that the computational approach (from a single vortex element to a three-dimensional panel formulation) is interwoven throughout. Thus, the reader can learn about classical methods of the past, while also learning how to use numerical methods to solve real-world aerodynamic problems. This second edition has a new chapter on the laminar boundary layer (emphasis on the viscous-inviscid coupling), the latest versions of computational techniques, and additional coverage of interaction problems. It includes a systematic treatment of two-dimensional panel methods and a detailed presentation of computational techniques for three-dimensional and unsteady flows. With extensive illustrations and examples, this book will be useful for senior and beginning graduate-level courses, as well as a helpful reference tool for practising engineers.







Principles of Helicopter Aerodynamics with CD Extra


Book Description

Written by an internationally recognized teacher and researcher, this book provides a thorough, modern treatment of the aerodynamic principles of helicopters and other rotating-wing vertical lift aircraft such as tilt rotors and autogiros. The text begins with a unique technical history of helicopter flight, and then covers basic methods of rotor aerodynamic analysis, and related issues associated with the performance of the helicopter and its aerodynamic design. It goes on to cover more advanced topics in helicopter aerodynamics, including airfoil flows, unsteady aerodynamics, dynamic stall, and rotor wakes, and rotor-airframe aerodynamic interactions, with final chapters on autogiros and advanced methods of helicopter aerodynamic analysis. Extensively illustrated throughout, each chapter includes a set of homework problems. Advanced undergraduate and graduate students, practising engineers, and researchers will welcome this thoroughly revised and updated text on rotating-wing aerodynamics.




Introduction to Aircraft Flight Mechanics


Book Description

Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.




NASA Technical Note


Book Description