Fluctuation Induced Cross-field Transport in Hall Thrusters and Tokamaks


Book Description

One area of fundamental plasma physics which remains poorly understood is the transport of particles across magnetic field lines at rates significantly higher than predicted by theory exclusively based on collisions. This "anomalous" transport is observed in many different classes of plasma experiment. Notably, both magnetic confinement fusion devices and Hall thrusters exhibit anomalous cross-field particle diffusion. This higher than predicted "loss" of particles has significant practical implications for both classes of experiment. In the case of magnetic confinement fusion experiments, such as tokamaks, the Lawson criterion nT[tau]E >/= 1021 [keV. s. M- 3] dictates that the reactant particles in a fusion plasma must be confined for a sufficient time to fuse. Higher than predicted cross-field transport decreases the effectiveness of the magnetic confinement and makes fusion more difficult to achieve. For Hall thrusters, enhanced cross-field electron mobility reduces the efficiency of the thruster. As a result, more propellant and power is required to achieve the same thrust. The goal of this thesis is to review observed and predicted fluctuation induced particle transport in Hall thrusters and tokamaks. To date, significant work has been done within both the tokamak and propulsion communities to attempt to quantify the effect of turbulent fluctuations of plasma parameters on anomalous cross-field transport. However, our understanding of the fundamental physical processes that lead to anomalously high cross-field transport remains incomplete. These two regimes of plasma physics are very different in several important ways. The magnetic field strength and field orientation, the device size, the collisionality of different species, the ion mass, and the presence of neutrals are all areas with significant differences between tokamaks and Hall thrusters. However, there are similarities as well. For example, the edge density and temperature in a tokamak are similar to those found in Hall thrusters, both have magnetized electrons, drift waves occur in both regimes and many of the observed fluctuations are of similar scale. Generally, research on cross-field transport within the tokamak community is isolated from work done within the thruster community. However, analysis of physics within both regimes reveals a rich set of complex fluctuations across a broad frequency spectrum, which contribute to cross-field transport. By studying the relevant phenomena in tandem, we can reveal fundamental processes present in both regimes. Hopefully, this will lead to a global explanation for these elusive physical processes.







Cross-field Particle Transport in the Edge of Plasma of Tokamak Experiments and Implications for ITER


Book Description

Particle transport in the edge plasma and scrape-off layer will play a key role in the performance and operation of a tokamak fusion reactor: setting the width of the scrape-off layer density profile and its impurity screening characteristics, regulating the energetic particle fluxes onto first-wall components and associated impurity generation rates, and determining the effectiveness of the divertor in receiving particle exhaust and controlling neutral pressures in the main-chamber. The processes which govern particle transport involve plasma turbulence, phenomena which can not yet be reliably computed from a first-principles numerical simulation. Thus, in order to project to a reactor-scale experiment, such as ITER, one must first develop an understanding of particle transport phenomena based on experimental measurements in existing plasma fusion devices. Over the past few years of research, a number of fundamental advances in the understanding of the cross-field particle transport physics have occurred, replacing crude, incorrect, and often misleading transport models such as the "constant diffusion coefficient" model with a more appropriate description of the phenomenon. It should be noted that this description applies to transport processes in the absence of ELM phenomenon, i.e., physics underlying the "background" plasma state. In this letter, we first review the experimental support for this understanding which is based extensively on data from L-mode discharges and from H-mode discharges at time intervals without ELMs. We then comment on its implications for ITER.







Simulation of Large Parallel Plasma Flows in the Tokamak SOL Driven by Cross-Field Transport Asymmetries


Book Description

Large-Mach-number parallel plasma flows in the single-null SOL of different tokamaks are simulated with multi-fluid transport code UEDGE. The key role of poloidal asymmetry of cross-field plasma transport as the driving mechanism for such flows is discussed. The impact of ballooning-like diffusive and convective transport and plasma flows on divertor detachment, material migration, impurity flows, and erosion/deposition profiles is studied. The results on well-balanced double null plasma modeling that are indicative of strong asymmetry of cross-field transport are presented.




Tokamaks


Book Description

The tokamak is the principal tool in controlled fusion research. This book serves as an introduction to the subject and a basic reference for theory, definitions, equations, and experimental results. This second edition covers advances in the field as well as the extensive experimental progress in the ten years since the first edition was published.










Propulsion


Book Description

Almost all animals move around frequently in space. Their aim is to walk and fly in search of food or to propagate their species. Thus, changing positions is important for creatures’ survival and maintaining the environment. As such, this book examines movement with a focus on force and propulsion. Chapters cover topics including rocket engines, electric propulsion, mechanisms of force, and more.




Fundamentals of Electric Propulsion


Book Description

Throughout most of the twentieth century, electric propulsion was considered the technology of the future. Now, the future has arrived. This important new book explains the fundamentals of electric propulsion for spacecraft and describes in detail the physics and characteristics of the two major electric thrusters in use today, ion and Hall thrusters. The authors provide an introduction to plasma physics in order to allow readers to understand the models and derivations used in determining electric thruster performance. They then go on to present detailed explanations of: Thruster principles Ion thruster plasma generators and accelerator grids Hollow cathodes Hall thrusters Ion and Hall thruster plumes Flight ion and Hall thrusters Based largely on research and development performed at the Jet Propulsion Laboratory (JPL) and complemented with scores of tables, figures, homework problems, and references, Fundamentals of Electric Propulsion: Ion and Hall Thrusters is an indispensable textbook for advanced undergraduate and graduate students who are preparing to enter the aerospace industry. It also serves as an equally valuable resource for professional engineers already at work in the field.