Fluid Flow for the Practicing Chemical Engineer


Book Description

This book teaches the fundamentals of fluid flow by including both theory and the applications of fluid flow in chemical engineering. It puts fluid flow in the context of other transport phenomena such as mass transfer and heat transfer, while covering the basics, from elementary flow mechanics to the law of conservation. The book then examines the applications of fluid flow, from laminar flow to filtration and ventilization. It closes with a discussion of special topics related to fluid flow, including environmental concerns and the economic reality of fluid flow applications.




Chemical Engineering Fluid Mechanics


Book Description

This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.




Fluid Mechanics, Heat Transfer, and Mass Transfer


Book Description

This broad-based book covers the three major areas of Chemical Engineering. Most of the books in the market involve one of the individual areas, namely, Fluid Mechanics, Heat Transfer or Mass Transfer, rather than all the three. This book presents this material in a single source. This avoids the user having to refer to a number of books to obtain information. Most published books covering all the three areas in a single source emphasize theory rather than practical issues. This book is written with emphasis on practice with brief theoretical concepts in the form of questions and answers, not adopting stereo-typed question-answer approach practiced in certain books in the market, bridging the two areas of theory and practice with respect to the core areas of chemical engineering. Most parts of the book are easily understandable by those who are not experts in the field. Fluid Mechanics chapters include basics on non-Newtonian systems which, for instance find importance in polymer and food processing, flow through piping, flow measurement, pumps, mixing technology and fluidization and two phase flow. For example it covers types of pumps and valves, membranes and areas of their use, different equipment commonly used in chemical industry and their merits and drawbacks. Heat Transfer chapters cover the basics involved in conduction, convection and radiation, with emphasis on insulation, heat exchangers, evaporators, condensers, reboilers and fired heaters. Design methods, performance, operational issues and maintenance problems are highlighted. Topics such as heat pipes, heat pumps, heat tracing, steam traps, refrigeration, cooling of electronic devices, NOx control find place in the book. Mass transfer chapters cover basics such as diffusion, theories, analogies, mass transfer coefficients and mass transfer with chemical reaction, equipment such as tray and packed columns, column internals including structural packings, design, operational and installation issues, drums and separators are discussed in good detail. Absorption, distillation, extraction and leaching with applications and design methods, including emerging practices involving Divided Wall and Petluk column arrangements, multicomponent separations, supercritical solvent extraction find place in the book.




Computational Fluid Dynamics and COMSOL Multiphysics


Book Description

This textbook covers computational fluid dynamics simulation using COMSOL Multiphysics® Modeling Software in chemical engineering applications. In the volume, the COMSOL Multiphysics package is introduced and applied to solve typical problems in chemical reactors, transport processes, fluid flow, and heat and mass transfer. Inspired by the difficulties of introducing the use of COMSOL Multiphysics software during classroom time, the book incorporates the author’s experience of working with undergraduate, graduate, and postgraduate students to make the book user friendly and that, at the same time, addresses typical examples within the subjects covered in the chemical engineering curriculum. Real-world problems require the use of simulation and optimization tools, and this volume shows how COMSOL Multiphysics software can be used for that purpose. Key features: • Includes over 500 step-by-step screenshots • Shows the graphical user interface of COMSOL, which does not require any programming effort • Provides chapter-end problems for extensive practice along with solutions • Includes actual examples of chemical reactors, transport processes, fluid flow, and heat and mass transfer This book is intended for students who want or need more help to solve chemical engineering assignments using computer software. It can also be used for computational courses in chemical engineering. It will also be a valuable resource for professors, research scientists, and practicing engineers.




Computational Fluid Dynamics for Engineers


Book Description

Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.




Rules of Thumb for Chemical Engineers


Book Description

Fractionators, separators and accumulators, cooling towers, gas treating, blending, troubleshooting field cases, gas solubility, and density of irregular solids * Hundreds of common sense techniques, shortcuts, and calculations.




Physical and Chemical Equilibrium for Chemical Engineers


Book Description

This book concentrates on the topic of physical and chemical equilibrium. Using the simplest mathematics along with numerous numerical examples it accurately and rigorously covers physical and chemical equilibrium in depth and detail. It continues to cover the topics found in the first edition however numerous updates have been made including: Changes in naming and notation (the first edition used the traditional names for the Gibbs Free Energy and for Partial Molal Properties, this edition uses the more popular Gibbs Energy and Partial Molar Properties,) changes in symbols (the first edition used the Lewis-Randal fugacity rule and the popular symbol for the same quantity, this edition only uses the popular notation,) and new problems have been added to the text. Finally the second edition includes an appendix about the Bridgman table and its use.




Chemical Engineering for Non-Chemical Engineers


Book Description

Outlines the concepts of chemical engineering so that non-chemical engineers can interface with and understand basic chemical engineering concepts Overviews the difference between laboratory and industrial scale practice of chemistry, consequences of mistakes, and approaches needed to scale a lab reaction process to an operating scale Covers basics of chemical reaction eningeering, mass, energy, and fluid energy balances, how economics are scaled, and the nature of various types of flow sheets and how they are developed vs. time of a project Details the basics of fluid flow and transport, how fluid flow is characterized and explains the difference between positive displacement and centrifugal pumps along with their limitations and safety aspects of these differences Reviews the importance and approaches to controlling chemical processes and the safety aspects of controlling chemical processes, Reviews the important chemical engineering design aspects of unit operations including distillation, absorption and stripping, adsorption, evaporation and crystallization, drying and solids handling, polymer manufacture, and the basics of tank and agitation system design




Fluid Mechanics for Chemical Engineers with Microfluidics and CFD.


Book Description

This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows"--Jacket.




Computational Fluid Dynamics for Engineers and Scientists


Book Description

This book offers a practical, application-oriented introduction to computational fluid dynamics (CFD), with a focus on the concepts and principles encountered when using CFD in industry. Presuming no more knowledge than college-level understanding of the core subjects, the book puts together all the necessary topics to give the reader a comprehensive introduction to CFD. It includes discussion of the derivation of equations, grid generation and solution algorithms for compressible, incompressible and hypersonic flows. The final two chapters of the book are intended for the more advanced user. In the penultimate chapter, the special difficulties that arise while solving practical problems are addressed. Distinction is made between complications arising out of geometrical complexity and those arising out of the complexity of the physics (and chemistry) of the problem. The last chapter contains a brief discussion of what can be considered as the Holy Grail of CFD, namely, finding the optimal design of a fluid flow component. A number of problems are given at the end of each chapter to reinforce the concepts and ideas discussed in that chapter. CFD has come of age and is widely used in industry as well as in academia as an analytical tool to investigate a wide range of fluid flow problems. This book is written for two groups: for those students who are encountering CFD for the first time in the form of a taught lecture course, and for those practising engineers and scientists who are already using CFD as an analysis tool in their professions but would like to deepen and broaden their understanding of the subject.