Fluid Mechanics and Thermodynamics of Our Environment


Book Description

Fluid Mechanics and Thermodynamics of Our Environment provides an introduction to the mechanical and thermodynamic properties of the environment. The book begins with a discussion of the nature of the physical environment, namely the earth, the atmosphere, and the oceans. It then reviews the origin, definitions, and physical characteristics and relations of concepts affecting the state of the geofluid system. Separate chapters cover the principles of heat transfer; factors affecting the mechanical and thermal equilibrium of the environment; the phenomenon of surface tension; kinematics and dynamics of the environment; inviscid motion of the atmospheric and oceanic free layers; and the physical and mathematical behavior of the planetary boundary layer. The final chapter discusses some applied problems pertaining to the environment. These include problems involving the thermal plume, hurricanes, and the dynamic response of a balloon in a vortical atmospheric column. This book was developed for engineering classes interested in the motion of the environment which is a main carrier of pollutants. The selection of topics and the emphasis make the material primarily suited for engineering work.




Computational Methods in Environmental Fluid Mechanics


Book Description

Fluids play an important role in environmental systems appearing as surface water in rivers, lakes, and coastal regions or in the subsurface as well as in the atmosphere. Mechanics of environmental fluids is concerned with fluid motion, associated mass and heat transport as well as deformation processes in subsurface systems. In this reference work the fundamental modelling approaches based on continuum mechanics for fluids in the environment are described, including porous media and turbulence. Numerical methods for solving the process governing equations as well as its object-oriented computer implementation are discussed and illustrated with examples. Finally, the application of computer models in civil and environmental engineering is demonstrated.




Fluid and Thermodynamics


Book Description

This first volume discusses fluid mechanical concepts and their applications to ideal and viscous processes. It describes the fundamental hydrostatics and hydrodynamics, and includes an almanac of flow problems for ideal fluids. The book presents numerous exact solutions of flows in simple configurations, each of which is constructed and graphically supported. It addresses ideal, potential, Newtonian and non-Newtonian fluids. Simple, yet precise solutions to special flows are also constructed, namely Blasius boundary layer flows, matched asymptotics of the Navier-Stokes equations, global laws of steady and unsteady boundary layer flows and laminar and turbulent pipe flows. Moreover, the well-established logarithmic velocity profile is criticised.




Fluid and Thermodynamics


Book Description

In this book fluid mechanics and thermodynamics (F&T) are approached as interwoven, not disjoint fields. The book starts by analyzing the creeping motion around spheres at rest: Stokes flows, the Oseen correction and the Lagerstrom-Kaplun expansion theories are presented, as is the homotopy analysis. 3D creeping flows and rapid granular avalanches are treated in the context of the shallow flow approximation, and it is demonstrated that uniqueness and stability deliver a natural transition to turbulence modeling at the zero, first order closure level. The difference-quotient turbulence model (DQTM) closure scheme reveals the importance of the turbulent closure schemes’ non-locality effects. Thermodynamics is presented in the form of the first and second laws, and irreversibility is expressed in terms of an entropy balance. Explicit expressions for constitutive postulates are in conformity with the dissipation inequality. Gas dynamics offer a first application of combined F&T. The book is rounded out by a chapter on dimensional analysis, similitude, and physical experiments.




Fluid Dynamics for Global Environmental Studies


Book Description

This book introduces the basic concepts of environmental fluid dynamics. It is intended for use by students, researchers, engineers, and specialists working not only in general fluid research but also in the atmospheric and oceanic research fields. The Earth is covered by atmosphere and oceans and is exposed to solar wind. Therefore, the knowledge of fluid dynamics is essential for tackling its environmental issues. Although many textbooks have treated fluid dynamics, practically no book has been published that clearly describes all essential ideas, from the fundamentals of fluid dynamics to advanced environmental sciences, with careful sequential explanations of the governing mathematics. This book has been developed to solve these educational problems and has actually been in use in lectures in the graduate school of Kyushu University for more than 15 years.




Recent Advances in Fluid Dynamics with Environmental Applications


Book Description

This book gathers selected contributions presented at the Enzo Levi and XX Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2014. The individual papers explore recent advances in experimental and theoretical fluid dynamics and are suitable for use in both teaching and research. The fluid dynamics applications covered include multiphase flows, convection, diffusion, heat transfer, rheology, granular materials, viscous flows, porous media flows, geophysics and astrophysics. The contributions, some of which are introductory and avoid the use of complicated mathematics, are suitable for fourth-year undergraduate and graduate students. Accordingly, the book is of immense benefit to these students, as well as to scientists in the fields of physics, chemistry and engineering with an interest in fluid dynamics from experimental and theoretical points of view.




Environmental Stratified Flows


Book Description

The dynamics of flows in density-stratified fluids has been and remains now an important topic for scientific enquiry. Such flows arise in many contexts, ranging from industrial settings to the oceanic and atmospheric environments. It is the latter topic which is the focus of this book. Both the ocean and atmosphere are characterised by the basic vertical density stratification, and this feature can affect the dynamics on all scales ranging from the micro-scale to the planetary scale. The aim of this book is to provide a “state-of-the-art” account of stratified flows as they are relevant to the ocean and atmosphere with a primary focus on meso-scale phenomena; that is, on phenomena whose time and space scales are such that the density stratification is a dominant effect, so that frictional and diffusive effects on the one hand and the effects of the earth’s rotation on the other hand can be regarded as of less importance. This in turn leads to an emphasis on internal waves.




Fluid Mechanics of Environmental Interfaces


Book Description

An environmental interface is defined as a surface between two abiotic or biotic systems, in relative motion and exchanging mass, heat and momentum through biophysical and/or chemical processes. These processes fluctuate temporally and spatially. The book first treats exchange processes occurring at the interfaces between atmosphere and the surface of the sea, and atmosphere and land surface. These exchanges include the effect of vegetation, transport of dust and dispersion of passive substances within the atmosphere. Processes at the environmental interfaces of freshwater, such as gas-transfer at free-surfaces of rivers, advective diffusion of air bubbles in turbulent water flows and boundary-layers phenomena in vegetated open channels are also described. Finally, the book deals with the phenomena that affect transport of material to and from the surface of an organism, including molecular and turbulent diffusion. The relevant issues related to mass transfer to and from benthic plants and animals are further considered in detail. The book will be of interest to graduate students and researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics and applied mathematics.




Fluid and Thermodynamics


Book Description

This first volume discusses fluid mechanical concepts and their applications to ideal and viscous processes. It describes the fundamental hydrostatics and hydrodynamics, and includes an almanac of flow problems for ideal fluids. The book presents numerous exact solutions of flows in simple configurations, each of which is constructed and graphically supported. It addresses ideal, potential, Newtonian and non-Newtonian fluids. Simple, yet precise solutions to special flows are also constructed, namely Blasius boundary layer flows, matched asymptotics of the Navier-Stokes equations, global laws of steady and unsteady boundary layer flows and laminar and turbulent pipe flows. Moreover, the well-established logarithmic velocity profile is criticised.




Advances In Environmental Fluid Mechanics


Book Description

Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.