Fluid Sciences and Materials Science in Space


Book Description

The peaceful use of space flight systems for research and technological devel opments in the context of promoting European and international cooperation represents the essential motivation for the programmes of the European Space Agency (ESA). One of ESA's programmes is dedicated to microgravity research, which is now an established discipline in Europe, with a dedicated group of scientists participating. The Challenger disaster has resulted in a serious dis continuity of flight opportunities in the next few years but the forthcoming International Space Station, new launchers and reentry vehicles are expected to provide ample opportunities for microgravity research in the long term. Meanwhile parabolic aircraft flights, sounding rockets as well as the delayed Shuttle-dependent missions, Spacelab D-2, the IML-missions and EURECA I, will be employed to keep microgravity experimenters reasonably busy in the interim period. To prepare the ground for these activities, both regarding research and experiment facilities, an in-depth analysis of the state of the art is an essential requirement at this time. Such an analysis is presented in this volume. It ad dresses all of the topics that have been identified to be of relevance. Besides a presentation of the fundamental aspects justifying microgravity research, the results of experiments already performed are reviewed and recommendations for future activities are made. Close to fifty European scientists have cooper ated in the preparation of this volume and their dedicated and concerted effort is greatly appreciated.




Clinical Fluid Therapy in the Perioperative Setting


Book Description

The world's most renowned researchers in fluid management explain what you should know when providing infusion fluids to surgical patients.




Fluid City


Book Description

Fluid City traces the transformation of the urban waterfront of Melbourne, the re-vitalization of the Yarra River waterfront, Melbourne Docklands and Port Philip Bay. As the financial and industrial centre of Australia, in the late nineteenth century, Melbourne developed a new world exuberance. Yet the twentieth century saw Melbourne suffering from a declining industrial and economic base. The city in the 1980s was de-industrialising, and the re-facing of the city to the water was a key urban strategy of the 1980s and 90s and a catalyst for economic transformation. This book bridges significant gaps between different discourses about the city and to challenge singular ways of viewing the city.




Shrines in a Fluid Space: The Shaping of New Holy Sites in the Ionian Islands, the Peloponnese and Crete under Venetian Rule (14th-16th Centuries)


Book Description

The open access publication of this book has been published with the support of the Swiss National Science Foundation. In Shrines in a Fluid Space: The Shaping of New Holy Sites in the Ionian Islands, the Peloponnese and Crete under Venetian Rule (14th-16th Centuries), Argyri Dermitzaki reconstructs the devotional experiences within the Greek realm of the Venetian Stato da Mar of Western European pilgrims sailing to Jerusalem. The author traces the evolution of the various forms of cultic sites and the perception of them as nodes of a wider network of the pilgrims’ ‘holy topography’. She scrutinises travelogues in conjunction with archaeological, visual and historical evidence and offers a study of the cultic phenomena and sites invested with exceptional meaning at the main ports of call of the pilgrims’ galleys in the Ionian Sea, the Peloponnese and Crete.




Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems


Book Description

Liquid Acquisition Devices for Advanced In-Space Cryogenic Propulsion Systems discusses the importance of reliable cryogenic systems, a pivotal part of everything from engine propulsion to fuel deposits. As some of the most efficient systems involve advanced cryogenic fluid management systems that present challenging issues, the book tackles issues such as the difficulty in obtaining data, the lack of quality data and models, and the complexity in trying to model these systems. The book presents models and experimental data based on rare and hard-to-obtain cryogenic data. Through clear descriptions of practical data and models, readers will explore the development of robust and flexible liquid acquisition devices (LAD) through component-level and full-scale ground experiments, as well as analytical tools. This book presents new and rare experimental data, as well as analytical models, in a fundamental area to the aerospace and space-flight communities. With this data, the reader can consider new and improved ways to design, analyze, and build expensive flight systems. - Presents a definitive reference for design ideas, analysis tools, and performance data on cryogenic liquid acquisition devices - Provides historical perspectives to present fundamental design models and performance data, which are applied to two practical examples throughout the book - Describes a series of models to optimize liquid acquisition device performance, which are confirmed through a variety of parametric component level tests - Includes video clips of experiments on a companion website




Equine Fluid Therapy


Book Description

Equine Fluid Therapy is the first reference to draw equine-specific fluid therapy information together into a single, comprehensive resource. Offering current information unique to horses on the research and practice of fluid, electrolyte, and acid-base disorders, the book is designed to be clinically oriented yet thorough, providing detailed strategies tailored to equine practice. With information ranging from physiology and acid-base balance to fluid therapy for specific conditions, Equine Fluid Therapy covers fluid treatments in both adult horses and foals, highlighting the unique physiologic features, conditions, and differences in foals. Well-illustrated throughout, the book begins with an overview of the physiology of fluids, electrolytes, and acid-base, then moves into practical information including equipment, monitoring techniques, fluid choices, and potential complications. A final section offers chapters on blood transfusions, colloids, parenteral nutrition, and hemodynamic monitoring. Equine Fluid Therapy is an essential reference for equine practitioners, specialists, and researchers.




Physics of Fluids in Microgravity


Book Description

In a microgravity experiment, the conditions prevalent in fluid phases can be substantially different from those on the ground and can be exploited to improve different processes. Fluid physics research in microgravity is important for the advancement of all microgravity scients: life, material, and engineering. Space flight provides a unique laboratory that allows scientists to improve their understanding of the behaviour of fluids in low gravity, allowing the investigation of phenomena and processes normally masked by the effects of gravity and thus difficult to study on Earth. Physics of Fluids in Microgravity provides a clear view of recent research and progress in the different fields of fluid research in space. The topics presented include bubles and drops dynamics, Maragoni flows, diffustion and thermodiffusion, solidfication,a nd crystal growth. The results obtained so far are, in some cases, to be confirmed by extensive research activities on the International Space station, where basic and applied microgravity experimentation will take place in the years to come.




Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables


Book Description

Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..• ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm.




Fluid Therapy in Animals


Book Description




Capillary Fluid Exchange


Book Description

The partition of fluid between the vascular and interstitial compartments is regulated by forces (hydrostatic and oncotic) operating across the microvascular walls and the surface areas of permeable structures comprising the endothelial barrier to fluid and solute exchange, as well as within the extracellular matrix and lymphatics. In addition to its role in the regulation of vascular volume, transcapillary fluid filtration also allows for continuous turnover of water bathing tissue cells, providing the medium for diffusional flux of oxygen and nutrients required for cellular metabolism and removal of metabolic byproducts. Transendothelial volume flow has also been shown to influence vascular smooth muscle tone in arterioles, hydraulic conductivity in capillaries, and neutrophil transmigration across postcapillary venules, while the flow of this filtrate through the interstitial spaces functions to modify the activities of parenchymal, resident tissue, and metastasizing tumor cells. Likewise, the flow of lymph, which is driven by capillary filtration, is important for the transport of immune and tumor cells, antigen delivery to lymph nodes, and for return of filtered fluid and extravasated proteins to the blood. Given this background, the aims of this treatise are to summarize our current understanding of the factors involved in the regulation of transcapillary fluid movement, how fluid movements across the endothelial barrier and through the interstitium and lymphatic vessels influence cell function and behavior, and the pathophysiology of edema formation. Table of Contents: Fluid Movement Across the Endothelial Barrier / The Interstitium / The Lymphatic Vasculature / Pathophysiology of Edema Formation