CRC Handbook of Applied Thermodynamics


Book Description

This practical handbook features an overview of the importance of physical properties and thermodynamics; and the use of thermo-dynamics to predict the extent of reaction in proposed new chem-ical combinations. The use of special types of data and pre-diction methods to develop flowsheets for probing projects; and sources of critically evaluated data, dividing the published works into three categories depending on quality are given. Methods of doing one's own critical evaluation of literature, a list of known North American contract experimentalists with the types of data mea-sured by each, methods for measuring equilibrium data, and ther-modynamic concepts to carry out process opti-mization are also featured.




Applied Thermodynamics of Fluids


Book Description

Published under the asspices of both IUPAC and its affiliated body, the International Association of Chemical Thermodynamics (IACT), this book will serve as a guide to scientists or technicians who use equations of state for fluids. Concentrating on the application of theory, the practical use of each type of equation is discussed and the strengths and weaknesses of each are addressed. It includes material on the equations of state for chemically reacting and non-equilibrium fluids which have undergone significant developments and brings up to date the equations of state for fluids and fluid mixtures. Applied Thermodynamics of Fluids addresses the need of practitioners within academia, government and industry by assembling an international team of distinguished experts to provide each chapter. The topics presented in the book are important to the energy business, particularly the hydroncarbon economy and the development of new power sources and are also significant for the application of liquid crystals and ionic liquids to commericial products. This reference will be useful for post graduate researchers in the fields of chemical engineering, mechanical engineering, chemistry and physics.




Characterization and Properties of Petroleum Fractions


Book Description

The last three chapters of this book deal with application of methods presented in previous chapters to estimate various thermodynamic, physical, and transport properties of petroleum fractions. In this chapter, various methods for prediction of physical and thermodynamic properties of pure hydrocarbons and their mixtures, petroleum fractions, crude oils, natural gases, and reservoir fluids are presented. As it was discussed in Chapters 5 and 6, properties of gases may be estimated more accurately than properties of liquids. Theoretical methods of Chapters 5 and 6 for estimation of thermophysical properties generally can be applied to both liquids and gases; however, more accurate properties can be predicted through empirical correlations particularly developed for liquids. When these correlations are developed with some theoretical basis, they are more accurate and have wider range of applications. In this chapter some of these semitheoretical correlations are presented. Methods presented in Chapters 5 and 6 can be used to estimate properties such as density, enthalpy, heat capacity, heat of vaporization, and vapor pressure. Characterization methods of Chapters 2-4 are used to determine the input parameters needed for various predictive methods. One important part of this chapter is prediction of vapor pressure that is needed for vapor-liquid equilibrium calculations of Chapter 9.




PVT and Phase Behaviour Of Petroleum Reservoir Fluids


Book Description

This book on PVT and Phase Behaviour Of Petroleum Reservoir Fluids is volume 47 in the Developments in Petroleum Science series. The chapters in the book are: Phase Behaviour Fundamentals, PVT Tests and Correlations, Phase Equilibria, Equations of State, Phase Behaviour Calculations, Fluid Characterisation, Gas Injection, Interfacial Tension, and Application in Reservoir Simulation.




Thermodynamics


Book Description

Thermodynamics is one of the most exciting branches of physical chemistry which has greatly contributed to the modern science. Being concentrated on a wide range of applications of thermodynamics, this book gathers a series of contributions by the finest scientists in the world, gathered in an orderly manner. It can be used in post-graduate courses for students and as a reference book, as it is written in a language pleasing to the reader. It can also serve as a reference material for researchers to whom the thermodynamics is one of the area of interest.




Select Thermodynamic Models for Process Simulation


Book Description

The selection of the most adequate thermodynamic model in a process simulation is an issue that most process engineer has to face sooner or later. This book, conceived as a practical guide, aims at providing adequate answers by analysing the questions to be looked at. The analysis (first chapter) yields three keys that are further discussed in three different chapters. (1) A good understanding of the properties required in the process, and their method of calculation is the first key. The second chapter provides to that end in a synthetic manner the most important equations that are derived from the fundamental principes of thermodynamics. (2) An adequate description of the mixture, which is a combination of models and parameters, is the second key. The third chapter makes the link between components and models, both from a numerical (parameterisation) and physical (molecular interactions) point of view. Finally, (3) a correct view of the phase behaviour and trends in regard of the process conditions is the third key. The fourth chapter illustrates the phase behaviour and makes model recommendations for the most significant industrial systems. A decision tree is provided at the end of this chapter. In the last chapter, the key questions are reviewed for a number of typical processes. This book is intended for process engineers, who are not specialists of thermodynamics but are confronted with this kind of problems and need a reference book, as well as process engineering students who will find an original approach to thermodynamics, complementary of traditional lectures




Handbook of Chemical Compound Data for Process Safety


Book Description

This book provides comprehensive safety and health-related data for hydrocarbons and organic chemicals as well as selected data for inorganic chemicals.




Separation Process Principles with Applications Using Process Simulators


Book Description

Covers the key topics in computer organization and embedded systems. This title presents hardware design principles and shows how hardware design is influenced by the requirements of software. It explains the main principles supported by examples drawn from commercially available processors.




Standard Handbook of Petroleum and Natural Gas Engineering: Volume 2


Book Description

Volume 2 presents the industry standards and practices for reservoir engineering and production engineering. It also looks at all aspects of petroleum economics and shows how to estimate oil and gas reserves.




Fundamentals of Process Safety Engineering


Book Description

This textbook covers the essential aspects of process safety engineering in a practical and comprehensive manner. It provides readers with an understanding of process safety hazards in the refining and petrochemical industries and how to manage them in a reliable and professional manner. It covers the most important concepts: static electricity, intensity of thermal radiation, thermodynamics of fluid phase equilibria, boiling liquid expanding vapor explosion (BLEVE), emission source models, hazard identification methods, risk control and methods for achieving manufacturing excellence while also focusing on safety. Extensive case studies are included. Aimed at senior undergraduate and graduate chemical engineering students and practicing engineers, this book covers process safety principles and engineering practice authoritatively, with comprehensive examples: • Fundamentals, methods, and procedures for the industrial practice of process safety engineering. • The thermodynamic fundamentals and computational methods for release rates from ruptures in pipelines, vessels, and relief valves. • Fundamentals of static electricity hazards and their mitigation. • Quantitative assessment of fires and explosions. • Principles of dispersion calculations for toxic or flammable gases and vapors. • Methods of qualitative and quantitative risk assessment and control.