Fluid Waves


Book Description

This book derives the mathematical basis for the most-encountered waves in fluids in science and engineering. It gives professionals in important occupations such as maritime engineering, climate science, urban noise control, and medical diagnostics the key formulae needed for calculations. The book begins with the basis of fluid dynamics and subsequent chapters cover surface gravity waves, sound waves, internal gravity waves, waves in rotating fluids, and introduce some nonlinear wave phenomena. Basic phenomena common to all fluid waves such as refraction are detailed. Thereafter, specialized application chapters describe specific contemporary problems. All concepts are supported by narrative examples, illustrations, and problems. FEATURES • Explains the basis of wave mechanics in fluid systems. • Provides tools for the analysis of water waves, sound waves, internal gravity waves, rotating fluid waves and some nonlinear wave phenomena, together with example problems. • Includes comprehensible mathematical derivations at the expense of fewer theoretical topics. • Reviews cases describable by linear theory and cases requiring nonlinear and wave-interaction theories. This book is suitable for senior undergraduates, graduate students and researchers in Fluid Mechanics, Applied Mathematics, Meteorology, Physical Oceanography, and in Biomedical, Civil, Chemical, Environmental, Mechanical, and Maritime Engineering.




Waves in Fluids


Book Description

A comprehensive textbook in which the author describes the science of waves in liquids and gases. Drawing on a subject of enormous extent and variety, he provides his readers with a thorough analysis of the most important and representative types of waves including sound waves, shock waves, waterwaves of all kinds, and the so-called internal waves (inside atmospheres and oceans) due to intensity stratification. Emphasis throughout is on the most generally useful fundamental ideas of wave science, including the principles of how waves interact with flows. This standard work on one of the great subdivisions of the dynamics of fluids is lucidly written and will be invaluable to engineers, physicists, geophysicists, applied mathematicians or any research worker concerned with wave motions or fluid fllows. It is especially suitable as a textbook for courses at the final year undergraduate or graduate level.




Compressible Fluid Dynamics and Shock Waves


Book Description

This book offers comprehensive coverage of compressible flow phenomena and their applications, and is intended for undergraduate/graduate students, practicing professionals, and researchers interested in the topic. Thanks to the clear explanations provided of a wide range of basic principles, the equations and formulas presented here can be understood with only a basic grasp of mathematics. The book particularly focuses on shock waves, offering a unique approach to the derivation of shock wave relations from conservation relations in fluids together with a contact surface, slip line or surface; in addition, the thrust of a rocket engine and that of an air-breathing engine are also formulated. Furthermore, the book covers important fundamentals of various aspects of physical fluid dynamics and engineering, including one-dimensional unsteady flows, and two-dimensional flows, in which oblique shock waves and Prandtl-Meyer expansion can be observed.







Water Waves and Ship Hydrodynamics


Book Description

In this book an introduction is given to aspects of water waves that play a role in ship hydrodynamics and offshore engineering. At first the equations and linearized boundary conditions are derived describing the non-viscous free surface water waves, with special attention to the combination of steady and non-steady flow fields. Then some simple kinds of free wave solutions are derived, such as plane waves and cylindrical waves. For several situations, steady and unsteady, the source singularity function is derived. These functions play a role in numerical codes used to describe the motion of ships and offshore structures. These codes are mostly based on a boundary integral formulation; therefore we give an introduction to these methods. It is shown how first order ship motions can be determined. In offshore engineering the second order wave drift motions play an important role. An introduction to this phenomenon is given and the effects which have to be taken into account are explained by means of a simple example where we can determine nearly all the aspects analytically. An interesting example that is worked out is the motion of very large floating flexible platforms with finite draft. Finally an introduction to the theory of shallow water non-linear dispersive waves is presented, and shallow water ship hydrodynamics, that plays a role in coastal areas and channels is treated. Here attention is paid to the interaction between passing ships in restricted water. In the appendix a short introduction to some of the mathematical tools is given.




Wave Interactions and Fluid Flows


Book Description

This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.




Waves in Flows


Book Description

This volume explores a range of recent advances in mathematical fluid mechanics, covering theoretical topics and numerical methods. Chapters are based on the lectures given at a workshop in the summer school Waves in Flows, held in Prague from August 27-31, 2018. A broad overview of cutting edge research is presented, with a focus on mathematical modeling and numerical simulations. Readers will find a thorough analysis of numerous state-of-the-art developments presented by leading experts in their respective fields. Specific topics covered include: Chemorepulsion Compressible Navier-Stokes systems Newtonian fluids Fluid-structure interactions Waves in Flows: The 2018 Prague-Sum Workshop Lectures will appeal to post-doctoral students and scientists whose work involves fluid mechanics.




Lectures on the Theory of Water Waves


Book Description

A range of experts contribute introductory-level lectures on active topics in the theory of water waves.




Internal Gravity Waves


Book Description

The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.




Water Wave Mechanics For Engineers And Scientists


Book Description

This book is intended as an introduction to classical water wave theory for the college senior or first year graduate student. The material is self-contained; almost all mathematical and engineering concepts are presented or derived in the text, thus making the book accessible to practicing engineers as well.The book commences with a review of fluid mechanics and basic vector concepts. The formulation and solution of the governing boundary value problem for small amplitude waves are developed and the kinematic and pressure fields for short and long waves are explored. The transformation of waves due to variations in depth and their interactions with structures are derived. Wavemaker theories and the statistics of ocean waves are reviewed. The application of the water particle motions and pressure fields are applied to the calculation of wave forces on small and large objects. Extension of the linear theory results to several nonlinear wave properties is presented. Each chapter concludes with a set of homework problems exercising and sometimes extending the material presented in the chapter. An appendix provides a description of nine experiments which can be performed, with little additional equipment, in most wave tank facilities.