Fluid Mechanics for Engineers


Book Description

The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.




Introduction to Thermal and Fluids Engineering


Book Description

Kaminski-Jensen is the first text to bring together thermodynamics, fluid mechanics, and heat transfer in an integrated manner, giving students the fullest possible understanding of their interconnectedness. The three topics are introduced early in the text, allowing for applications across these areas early in the course. Class-tested for two years to more than 800 students at Rensselaer, the text’s novel approach has received national attention for its demonstrable success.




Methods for Solving Complex Problems in Fluids Engineering


Book Description

This book describes recently developed research methods used to study complex problems in fluid engineering, especially optical flow measurement, flow visualization and numerical methods. It includes a wealth of diagrams and images, and the content is presented in a step-by-step manner from beginning to end, helping readers grasp the central points of the book. The book also presents a number of practical cases, illustrating how the research methods covered can be concretely implemented. Lastly, the book offers a valuable point of departure for pursuing further research.




Entropy Based Design and Analysis of Fluids Engineering Systems


Book Description

From engineering fluid mechanics to power systems, information coding theory and other fields, entropy is key to maximizing performance in engineering systems. It serves a vital role in achieving the upper limits of efficiency of industrial processes and quality of manufactured products. Entropy based design (EBD) can shed new light on various flow




Introduction to Thermal and Fluid Engineering


Book Description

Introduction to Thermal and Fluid Engineering combines coverage of basic thermodynamics, fluid mechanics, and heat transfer for a one- or two-term course for a variety of engineering majors. The book covers fundamental concepts, definitions, and models in the context of engineering examples and case studies. It carefully explains the methods used t




Engineering Fluid Mechanics


Book Description

Engineering Fluid Mechanics guides students from theory to application, emphasizing critical thinking, problem solving, estimation, and other vital engineering skills. Clear, accessible writing puts the focus on essential concepts, while abundant illustrations, charts, diagrams, and examples illustrate complex topics and highlight the physical reality of fluid dynamics applications. Over 1,000 chapter problems provide the “deliberate practice”—with feedback—that leads to material mastery, and discussion of real-world applications provides a frame of reference that enhances student comprehension. The study of fluid mechanics pulls from chemistry, physics, statics, and calculus to describe the behavior of liquid matter; as a strong foundation in these concepts is essential across a variety of engineering fields, this text likewise pulls from civil engineering, mechanical engineering, chemical engineering, and more to provide a broadly relevant, immediately practicable knowledge base. Written by a team of educators who are also practicing engineers, this book merges effective pedagogy with professional perspective to help today’s students become tomorrow’s skillful engineers.




Modeling and Simulation in Thermal and Fluids Engineering


Book Description

This textbook comprehensively covers the fundamentals behind mathematical modeling of engineering problems to obtain the required solution. It comprehensively discusses modeling concepts through conservation principles with a proper blending of mathematical expressions. The text discusses the basics of governing equations in algebraic and differential forms and examines the importance of mathematics as a tool in modeling. It covers important topics including modeling of heat transfer problems, modeling of flow problems, modeling advection-diffusion problems and Navier-Stokes equations in depth. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understanding. The textbook is primarily written for senior undergraduate and graduate students in the field of mechanical engineering for courses on modeling and simulation. The textbook will be accompanied by teaching resource including a solution manual for the instructors.




Engineering Thermofluids


Book Description

Thermofluids, while a relatively modern term, is applied to the well-established field of thermal sciences, which is comprised of various intertwined disciplines. Thus mass, momentum, and heat transfer constitute the fundamentals of th- mofluids. This book discusses thermofluids in the context of thermodynamics, single- and two-phase flow, as well as heat transfer associated with single- and two-phase flows. Traditionally, the field of thermal sciences is taught in univer- ties by requiring students to study engineering thermodynamics, fluid mechanics, and heat transfer, in that order. In graduate school, these topics are discussed at more advanced levels. In recent years, however, there have been attempts to in- grate these topics through a unified approach. This approach makes sense as thermal design of widely varied systems ranging from hair dryers to semicond- tor chips to jet engines to nuclear power plants is based on the conservation eq- tions of mass, momentum, angular momentum, energy, and the second law of thermodynamics. While integrating these topics has recently gained popularity, it is hardly a new approach. For example, Bird, Stewart, and Lightfoot in Transport Phenomena, Rohsenow and Choi in Heat, Mass, and Momentum Transfer, El- Wakil, in Nuclear Heat Transport, and Todreas and Kazimi in Nuclear Systems have pursued a similar approach. These books, however, have been designed for advanced graduate level courses. More recently, undergraduate books using an - tegral approach are appearing.




Fluid Power Engineering


Book Description

Develop high-performance hydraulic and pneumatic power systems Design, operate, and maintain fluid and pneumatic power equipment using the expert information contained in this authoritative volume. Fluid Power Engineering presents a comprehensive approach to hydraulic systems engineering with a solid grounding in hydrodynamic theory. The book explains how to create accurate mathematical models, select and assemble components, and integrate powerful servo valves and actuators. You will also learn how to build low-loss transmission lines, analyze system performance, and optimize efficiency. Work with hydraulic fluids, pumps, gauges, and cylinders Design transmission lines using the lumped parameter model Minimize power losses due to friction, leakage, and line resistance Construct and operate accumulators, pressure switches, and filters Develop mathematical models of electrohydraulic servosystems Convert hydraulic power into mechanical energy using actuators Precisely control load displacement using HSAs and control valves Apply fluid systems techniques to pneumatic power systems




Physics of Continuous Matter, Second Edition


Book Description

Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World, Second Edition provides an introduction to the basic ideas of continuum physics and their application to a wealth of macroscopic phenomena. The text focuses on the many approximate methods that offer insight into the rich physics hidden in fundamental continuum mechanics equations. Like its acclaimed predecessor, this second edition introduces mathematical tools on a "need-to-know" basis. New to the Second Edition This edition includes three new chapters on elasticity of slender rods, energy, and entropy. It also offers more margin drawings and photographs and improved images of simulations. Along with reorganizing much of the material, the author has revised many of the physics arguments and mathematical presentations to improve clarity and consistency. The collection of problems at the end of each chapter has been expanded as well. These problems further develop the physical and mathematical concepts presented. With worked examples throughout, this book clearly illustrates both qualitative and quantitative physics reasoning. It emphasizes the importance in understanding the physical principles behind equations and the conditions underlying approximations. A companion website provides a host of ancillary materials, including software programs, color figures, and additional problems.