Fluorescence Molecular Tomography


Book Description

​Fluorescence Molecular Tomography: Principles and Applications is the first book to cover the underlying principles and practical applications of fluorescence molecular tomography (FMT) in a systematic manner. Using a tutorial approach, the text begins with an overview of the fundamentals of FMT and goes on to detail image reconstruction approaches (including linear and nonlinear reconstruction algorithms), FMT instrumentations (including time-domain, frequency-domain, and continuous-wave domain systems), and implementation of image-enhancing schemes (including both software and hardware approaches). Further chapters examine multimodal approaches combining photoacoustic tomography (PAT), computed tomography (CT), single-photon emission tomography (SPECT), and magnetic resonance imaging (MRI) and discuss bioluminescence tomography and miniaturized FMT from hand-held to endoscopic FMT. A final chapter looks at clinical applications and animal studies. This authoritative and practical guide will serve as a valuable reference for researchers, scientists, clinicians, and industry professionals. ​The first book dedicated to fluorescence molecular tomography (FMT); Covers underlying principles and practical applications; Written by a leading FMT research pioneer and expert.




Molecular Imaging


Book Description

"Molecular Imaging: Fundamentals and Applications" is a comprehensive monograph which describes not only the theory of the underlying algorithms and key technologies but also introduces a prototype system and its applications, bringing together theory, technology and applications. By explaining the basic concepts and principles of molecular imaging, imaging techniques, as well as research and applications in detail, the book provides both detailed theoretical background information and technical methods for researchers working in medical imaging and the life sciences. Clinical doctors and graduate students will also benefit from this book. Jie Tian is a professor at the Institute of Automation, Chinese Academy of Sciences, China.




Molecular Imaging


Book Description

The detection and measurement of the dynamic regulation and interactions of cells and proteins within the living cell are critical to the understanding of cellular biology and pathophysiology. The multidisciplinary field of molecular imaging of living subjects continues to expand with dramatic advances in chemistry, molecular biology, therapeutics, engineering, medical physics and biomedical applications. Molecular Imaging: Principles and Practice, Volumes 1 and 2, Second Edition provides the first point of entry for physicians, scientists, and practitioners. This authoritative reference book provides a comprehensible overview along with in-depth presentation of molecular imaging concepts, technologies and applications making it the foremost source for both established and new investigators, collaborators, students and anyone interested in this exciting and important field. - The most authoritative and comprehensive resource available in the molecular-imaging field, written by over 170 of the leading scientists from around the world who have evaluated and summarized the most important methods, principles, technologies and data - Concepts illustrated with over 600 color figures and molecular-imaging examples - Chapters/topics include, artificial intelligence and machine learning, use of online social media, virtual and augmented reality, optogenetics, FDA regulatory process of imaging agents and devices, emerging instrumentation, MR elastography, MR fingerprinting, operational radiation safety, multiscale imaging and uses in drug development - This edition is packed with innovative science, including theranostics, light sheet fluorescence microscopy, (LSFM), mass spectrometry imaging, combining in vitro and in vivo diagnostics, Raman imaging, along with molecular and functional imaging applications - Valuable applications of molecular imaging in pediatrics, oncology, autoimmune, cardiovascular and CNS diseases are also presented - This resource helps integrate diverse multidisciplinary concepts associated with molecular imaging to provide readers with an improved understanding of current and future applications




Encyclopedia of Diagnostic Imaging


Book Description

The aim of this comprehensive encyclopedia is to provide detailed information on diagnostic radiology contributing to the broad field of imaging. The simple A to Z format provides easy access to relevant information. Extensive cross references between keywords and related articles enable efficient searches in a user-friendly manner. The wide range of entries will provide basic and clinical scientists in academia, practice and industry with valuable information about the field of diagnostic imaging. Those in related fields will also benefit from the important and relevant information on the most recent developments. Please note that this publication is available as print only or online only or print + online set. Save 75% of the online list price when purchasing the bundle. For more information on the online version please type the publication title into the search box above, then click on the eReference version in the results list.




Molecular Imaging


Book Description

The field of molecular imaging of living subjects have evolved considerably and have seen spectacular advances in chemistry, engineering and biomedical applications. This textbook was designed to fill the need for an authoritative source for this multi-disciplinary field. We have been fortunate to recruit over 80 leading authors contributing 75 individual chapters. Given the multidisciplinary nature of the field, the book is broken into six different sections: "Molecular Imaging technologies", "Chemistry", "Molecular Imaging in Cell and Molecular Biology", "Applications of Molecular Imaging", "Molecular Imaging in Drug Evaluation" with the final section comprised of chapters on computation, bioinformatics and modeling. The organization of this large amount of information is logical and strives to avoid redundancies among chapters. It encourages the use of figures to illustrate concepts and to provide numerous molecular imaging examples.




Imaging from Cells to Animals In Vivo


Book Description

This book offers an overview of imaging techniques used to investigate cells and tissue in their native environment. It covers the range of imaging approaches used, as well as the application of those techniques to the study of biological processes in cells and whole tissues within living organisms.




Diffuse Optical Tomography


Book Description

Written by an authority involved in the field since its nascent stages, Diffuse Optical Tomography: Principles and Applications is a long-awaited profile of a revolutionary imaging method. Diffuse Optical Tomography (DOT) provides spatial distributions of intrinsic tissue optical properties or molecular contrast agents through model-based reconstruction algorithms using NIR measurements along or near the boundary of tissue. Despite the practical value of DOT, many engineers from electrical or applied mathematics backgrounds do not have a sufficient understanding of its vast clinical applications and portability value, or its uncommon advantages as a tool for obtaining functional, cellular, and molecular parameters. A collection of the author’s research and experience, this book fuses historical perspective and experiential anecdotes with fundamental principles and vital technical information needed to successfully apply this technology—particularly in medical imaging. This reference finally outlines how to use DOT to create experimental image systems and adapt the results of laboratory studies for use in clinical applications including: Early-stage detection of breast tumors and prostate cancer "Real-time" functional brain imaging Joint imaging to treat progressive diseases such as arthritis Monitoring of tumor response New contrast mechanisms and multimodality methods This book covers almost every aspect of DOT—including reconstruction algorithms based on nonlinear iterative Newton methods, instrumentation and calibration methods in both continuous-wave and frequency domains, and important issues of imaging contrast and spatial resolution. It also addresses phantom experiments and the development of various image-enhancing schemes, and it describes reconstruction methods based on contrast agents and fluorescence DOT. Offering a concise description of the particular problems involved in optical tomography, this reference illustrates DOT’s fundamental foundations and the principle of image reconstruction. It thoroughly explores computational methods, forward mathematical models, and inverse strategies, clearly illustrating solutions to key equations.




Biomedical Optical Imaging


Book Description

Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this technology with exogenous chromophores can selectively enhance contrast for molecular targets as well as supply functional information on processes such as nerve transduction. Novel techniques integrate microscopy with state-of-the-art optics technology, and these include spectral imaging, two photon fluorescence correlation, nonlinear nanoscopy; optical coherence tomography techniques allow functional, dynamic, nanoscale, and cross-sectional visualization. Moving to the macroscopic scale, spectroscopic assessment and imaging methods such as fluorescence and light scattering can provide diagnostics of tissue pathology including neoplastic changes. Techniques using light diffusion and photon migration are a means to explore processes which occur deep inside biological tissues and organs. The integration of these techniques with exogenous probes enables molecular specific sensitivity.




Molecular Imaging


Book Description

The present book gives an exceptional overview of molecular imaging. Practical approach represents the red thread through the whole book, covering at the same time detailed background information that goes very deep into molecular as well as cellular level. Ideas how molecular imaging will develop in the near future present a special delicacy. This should be of special interest as the contributors are members of leading research groups from all over the world.




Fluorescence Imaging and Biological Quantification


Book Description

This comprehensive reference work details the latest developments in fluorescence imaging and related biological quantification. It explores the most recent techniques in this imaging technology through the utilization and incorporation of quantification analysis which makes this book unique. It also covers super resolution microscopy with the introduction of 3D imaging and high resolution fluorescence. Many of the chapter authors are world class experts in this medical imaging technology.