Handbook of Food Process Design


Book Description

In the 21st Century, processing food is no longer a simple or straightforward matter. Ongoing advances in manufacturing have placed new demands on the design and methodology of food processes. A highly interdisciplinary science, food process design draws upon the principles of chemical and mechanical engineering, microbiology, chemistry, nutrition and economics, and is of central importance to the food industry. Process design is the core of food engineering, and is concerned at its root with taking new concepts in food design and developing them through production and eventual consumption. Handbook of Food Process Design is a major new 2-volume work aimed at food engineers and the wider food industry. Comprising 46 original chapters written by a host of leading international food scientists, engineers, academics and systems specialists, the book has been developed to be the most comprehensive guide to food process design ever published. Starting from first principles, the book provides a complete account of food process designs, including heating and cooling, pasteurization, sterilization, refrigeration, drying, crystallization, extrusion, and separation. Mechanical operations including mixing, agitation, size reduction, extraction and leaching processes are fully documented. Novel process designs such as irradiation, high-pressure processing, ultrasound, ohmic heating and pulsed UV-light are also presented. Food packaging processes are considered, and chapters on food quality, safety and commercial imperatives portray the role process design in the broader context of food production and consumption.




Food Process Design


Book Description

This timely reference utilizes simplified computer strategies to analyze, develop, and optimize industrial food processes and offers procedures to assess various operating conditions, engineering and economic relationships, and the physical and transport properties of foods for the design of the most efficient food manufacturing technologies and eq




Food Preservation Process Design


Book Description

The preservation processes for foods have evolved over several centuries, but recent attention to non-thermal technologies suggests that a new dimension of change has been initiated.The new dimension to be emphasized is the emerging technologies for preservation of foods and the need for sound base of information to be developed as inputs for systematic process design. The focus of the work is on process design, and emphasizes the need for quantitative information as inputs to process design.The concepts presented build on the successful history of thermal processing of foods and use many examples from these types of preservation processes. Preservation of foods by refrigeration, freezing, concentration and dehydration are not addressed directly, but many of the concepts to be presented would apply. Significant attention is given to the fate of food quality attributes during the preservation process and the concept of optimizing process parameters to maximize the retention of food quality. - Focuses on Kinetic Models for Food Components - Reviews Transport Models in Food Systems - Asseses Process Design Models




Food Process Engineering and Technology


Book Description

The past 30 years have seen the establishment of food engineering both as an academic discipline and as a profession. Combining scientific depth with practical usefulness, this book serves as a tool for graduate students as well as practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes as well as process control and plant hygiene topics. - Strong emphasis on the relationship between engineering and product quality/safety - Links theory and practice - Considers topics in light of factors such as cost and environmental issues




Fundamentals of Food Process Engineering


Book Description

Ten years after the publication of the first edition of Fundamentals of Food Process Engineering, there have been significant changes in both food science education and the food industry itself. Students now in the food science curric ulum are generally better prepared mathematically than their counterparts two decades ago. The food science curriculum in most schools in the United States has split into science and business options, with students in the science option following the Institute of Food Technologists' minimum requirements. The minimum requirements include the food engineering course, thus students en rolled in food engineering are generally better than average, and can be chal lenged with more rigor in the course material. The food industry itself has changed. Traditionally, the food industry has been primarily involved in the canning and freezing of agricultural commodi ties, and a company's operations generally remain within a single commodity. Now, the industry is becoming more diversified, with many companies involved in operations involving more than one type of commodity. A number of for mulated food products are now made where the commodity connection becomes obscure. The ability to solve problems is a valued asset in a technologist, and often, solving problems involves nothing more than applying principles learned in other areas to the problem at hand. A principle that may have been commonly used with one commodity may also be applied to another commodity to produce unique products.




Food Process Engineering And Technology


Book Description

"Food Process Engineering focuses on the design, operation and maintenance of chemical and other process manufacturing activities. The development of "Agro Processing" will spur agricultural diversification. There are several benefits of promoting small scale agro-processing units rather large scale for the promotion of rural entrepreneurship. Appropriate post harvest management and value addition to agricultural products, in their production catchments, will lead to employment and income generation in the rural sector and minimize the losses of harvested biomass. Adoption of suitable technology plays a vital role in fixing the cost of the final product and consequently makes the venture, a profitable one. It is observed that imported agro-processing machines or their imitations are used for preparing food products. Actually, the working of these machines should be critically studied in context of the energy input and the quality of the finished product."




Modeling Food Processing Operations


Book Description

Computational modeling is an important tool for understanding and improving food processing and manufacturing. It is used for many different purposes, including process design and process optimization. However, modeling goes beyond the process and can include applications to understand and optimize food storage and the food supply chain, and to perform a life cycle analysis. Modeling Food Processing Operations provides a comprehensive overview of the various applications of modeling in conventional food processing. The needs of industry, current practices, and state-of-the-art technologies are examined, and case studies are provided. Part One provides an introduction to the topic, with a particular focus on modeling and simulation strategies in food processing operations. Part Two reviews the modeling of various food processes involving heating and cooling. These processes include: thermal inactivation; sterilization and pasteurization; drying; baking; frying; and chilled and frozen food processing, storage and display. Part Three examines the modeling of multiphase unit operations such as membrane separation, extrusion processes and food digestion, and reviews models used to optimize food distribution. - Comprehensively reviews the various applications of modeling in conventional food processing - Examines the modeling of multiphase unit operations and various food processes involving heating and cooling - Analyzes the models used to optimize food distribution




Food Process Engineering


Book Description

The Second Edition of Food Process Engineering by Dr. Dennis Heldman, my former student, and co-author Paul Singh, his former student, attests to the importance of the previous edition. In the Foreword to the First Edition, I noted the need for people in all facets of the food processing industry to consider those variables of design of particular importance in engineering for the food processing field. In addition to recognizing the many variables involved in the biological food product being handled from production to consumption, the engi neer must oftentimes adapt equations developed for non-biological materials. As more and more research is done, those equations are appropriately modified to be more accurate or new equations are developed specifically for designing to process foods. This Edition updates equations used. This book serves a very important need in acquainting engineers and technologists, particularly those with a math ematics and physics background, with the information necessary to provide a more efficient design to accomplish the objectives. Of prime importance, at present and in the future, is to design for efficient use of energy. Now, it is often economical to put considerably more money into first costs for an efficient design than previously, when energy costs were a much smaller proportion of the total cost of process engineering.




Engineering Principles of Unit Operations in Food Processing


Book Description

Engineering Principles of Unit Operations in Food Processing, volume 1 in the Woodhead Publishing Series, In Unit Operations and Processing Equipment in the Food Industry series, presents basic principles of food engineering with an emphasis on unit operations, such as heat transfer, mass transfer and fluid mechanics. - Brings new opportunities in the optimization of food processing operations - Thoroughly explores applications of food engineering to food processes - Focuses on unit operations from an engineering viewpoint




Introduction to Food Process Engineering


Book Description

Consumer expectations are systematically growing, with demands for foods with a number of attributes, which are sometimes difficult for manufacturers to meet. The engineering processes that are needed to obtain top-quality foods are a major challenge due to the diversity of raw materials, intermediates, and final products. As in any other enterprise, the food industry must optimize each of the steps in the production chain to attain the best possible results. There is no question that a very important aspect to take into consideration when developing a process, designing a food factory, or modifying existing facilities is the in-depth knowledge of the basic engineering aspects involved in a given project. Introduction to Food Process Engineering covers the fundamental principles necessary to study, understand, and analyze most unit operations in the food engineering domain. It was conceived with two clear objectives in mind: 1) to present all of the subjects in a systematic, coherent, and sequential fashion in order to provide an excellent knowledge base for a number of conventional and unconventional processes encountered in food industry processing lines, as well as novel processes at the research and development stages; 2) to be the best grounding possible for another CRC Press publication, Unit Operations in Food Engineering, Second Edition, by the same authors. These two books can be consulted independently, but at the same time, there is a significant and welcomed match between the two in terms of terminology, definitions, units, symbols, and nomenclature. Highlights of the book include: Dimensional analysis and similarities Physicochemistry of food systems Heat and mass transfer in food Food rheology Physical properties Water activity Thermal processing Chilling and freezing Evaporation Dehydration Extensive examples, problems, and solutions