Forcing, Iterated Ultrapowers, And Turing Degrees


Book Description

This volume presents the lecture notes of short courses given by three leading experts in mathematical logic at the 2010 and 2011 Asian Initiative for Infinity Logic Summer Schools. The major topics covered set theory and recursion theory, with particular emphasis on forcing, inner model theory and Turing degrees, offering a wide overview of ideas and techniques introduced in contemporary research in the field of mathematical logic.




Combinatorial And Toric Homotopy: Introductory Lectures


Book Description

This volume consists of introductory lectures on the topics in the new and rapidly developing area of toric homotopy theory, and its applications to the current research in configuration spaces and braids, as well as to more applicable mathematics such as fr-codes and robot motion planning.The book starts intertwining homotopy theoretical and combinatorial ideas within the remits of toric topology and illustrates an attempt to classify in a combinatorial way polytopes known as fullerenes, which are important objects in quantum physics, quantum chemistry and nanotechnology. Toric homotopy theory is then introduced as a further development of toric topology, which describes properties of Davis-Januszkiewicz spaces, moment-angle complexes and their generalizations to polyhedral products. The book also displays the current research on configuration spaces, braids, the theory of limits over the category of presentations and the theory of fr-codes. As an application to robotics, the book surveys topological problems relevant to the motion planning problem of robotics and includes new results and constructions, which enrich the emerging area of topological robotics.The book is at research entry level addressing the core components in homotopy theory and their important applications in the sciences and thus suitable for advanced undergraduate and graduate students.




Reverse Mathematics


Book Description

Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights. This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all areas of mathematics. It includes detailed introductions to techniques from computable mathematics, Weihrauch style analysis, and other parts of computability that have become integral to research in the field. Topics and features: Provides a complete introduction to reverse mathematics, including necessary background from computability theory, second order arithmetic, forcing, induction, and model construction Offers a comprehensive treatment of the reverse mathematics of combinatorics, including Ramsey's theorem, Hindman's theorem, and many other results Provides central results and methods from the past two decades, appearing in book form for the first time and including preservation techniques and applications of probabilistic arguments Includes a large number of exercises of varying levels of difficulty, supplementing each chapter The text will be accessible to students with a standard first year course in mathematical logic. It will also be a useful reference for researchers in reverse mathematics, computability theory, proof theory, and related areas. Damir D. Dzhafarov is an Associate Professor of Mathematics at the University of Connecticut, CT, USA. Carl Mummert is a Professor of Computer and Information Technology at Marshall University, WV, USA.




Sets And Computations


Book Description

The contents in this volume are based on the program Sets and Computations that was held at the Institute for Mathematical Sciences, National University of Singapore from 30 March until 30 April 2015. This special collection reports on important and recent interactions between the fields of Set Theory and Computation Theory. This includes the new research areas of computational complexity in set theory, randomness beyond the hyperarithmetic, powerful extensions of Goodstein's theorem and the capturing of large fragments of set theory via elementary-recursive structures.Further chapters are concerned with central topics within Set Theory, including cardinal characteristics, Fraïssé limits, the set-generic multiverse and the study of ideals. Also Computation Theory, which includes computable group theory and measure-theoretic aspects of Hilbert's Tenth Problem. A volume of this broad scope will appeal to a wide spectrum of researchers in mathematical logic.







The Geometry, Topology And Physics Of Moduli Spaces Of Higgs Bundles


Book Description

In the 25 years since their introduction, Higgs bundles have seen a surprising number of interactions within different areas of mathematics and physics. There is a recent surge of interest following Ngô Bau Châu's proof of the Fundamental Lemma and the work of Kapustin and Witten on the Geometric Langlands program. The program on The Geometry, Topology and Physics of Moduli Spaces of Higgs Bundles, was held at the Institute for Mathematical Sciences at the National University of Singapore during 2014. It hosted a number of lectures on recent topics of importance related to Higgs bundles, and it is the purpose of this volume to collect these lectures in a form accessible to graduate students and young researchers interested in learning more about this field.




Mathematics Of Shapes And Applications


Book Description

Understanding how a single shape can incur a complex range of transformations, while defining the same perceptually obvious figure, entails a rich and challenging collection of problems, at the interface between applied mathematics, statistics and computer science. The program on Mathematics of Shapes and Applications, was held at the Institute for Mathematical Sciences at the National University of Singapore in 2016. It provided discussions on theoretical developments and numerous applications in computer vision, object recognition and medical imaging.The analysis of shapes is an example of a mathematical problem directly connected with applications while offering deep open challenges to theoretical mathematicians. It has grown, over the past decades, into an interdisciplinary area in which researchers studying infinite-dimensional Riemannian manifolds (global analysis) interact with applied mathematicians, statisticians, computer scientists and biomedical engineers on a variety of problems involving shapes.The volume illustrates this wealth of subjects by providing new contributions on the metric structure of diffeomorphism groups and shape spaces, recent developments on deterministic and stochastic models of shape evolution, new computational methods manipulating shapes, and new statistical tools to analyze shape datasets. In addition to these contributions, applications of shape analysis to medical imaging and computational anatomy are discussed, leading, in particular, to improved understanding of the impact of cognitive diseases on the geometry of the brain.




Genealogies of Interacting Particle Systems


Book Description

"Interacting particle systems are Markov processes involving infinitely many interacting components. Since their introduction in the 1970s, researchers have found many applications in statistical physics and population biology. Genealogies, which follow the origin of the state of a site backwards in time, play an important role in their studies, especially for the biologically motivated systems. The program Genealogies of Interacting Particle Systems held at the Institute for Mathematical Sciences, National University of Singapore, from 17 July to 18 Aug 2017, brought together experts and young researchers interested in this modern topic. Central to the program were learning sessions where lecturers presented work outside of their own research, as well as a normal workshop "--Publisher's website.




Mathemusical Conversations: Mathematics And Computation In Music Performance And Composition


Book Description

Mathemusical Conversations celebrates the understanding of music through mathematics, and the appreciation of mathematics through music. This volume is a compilation of the invited talks given at the Mathemusical Conversations workshop that took place in Singapore from 13-15 February 2015, organized by Elaine Chew in partnership with Gérard Assayag for the scientific program and with Bernard Lanskey for the artistic program. The contributors are world experts and leading scholars, writing on the intersection of music and mathematics. They also focus on performance and composition, two topics which are foundational both to the understanding of human creativity and to the creation of tomorrow's music technologies. This book is essential reading for researchers in both music and mathematics. It will also appeal more broadly to scholars, students, musicians, and anyone interested in new perspectives on the intimate relationship between these two universal human activities.




White Noise Analysis And Quantum Information


Book Description

This volume is to pique the interest of many researchers in the fields of infinite dimensional analysis and quantum probability. These fields have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. These fields are rather wide and are of a strongly interdisciplinary nature. For such a purpose, we strove to bridge among these interdisciplinary fields in our Workshop on IDAQP and their Applications that was held at the Institute for Mathematical Sciences, National University of Singapore from 3-7 March 2014. Readers will find that this volume contains all the exciting contributions by well-known researchers in search of new directions in these fields.