Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM)


Book Description

Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM) focuses on a time series model in Single Source of Error state space form, called “ADAM” (Augmented Dynamic Adaptive Model). The book demonstrates a holistic view to forecasting and time series analysis using dynamic models, explaining how a variety of instruments can be used to solve real life problems. At the moment, there is no other tool in R or Python that would be able to model both intermittent and regular demand, would support both ETS and ARIMA, work with explanatory variables, be able to deal with multiple seasonalities (e.g. for hourly demand data) and have a support for automatic selection of orders, components and variables and provide tools for diagnostics and further improvement of the estimated model. ADAM can do all of that in one and the same framework. Given the rising interest in forecasting, ADAM, being able to do all those things, is a useful tool for data scientists, business analysts and machine learning experts who work with time series, as well as any researchers working in the area of dynamic models. Key Features: • It covers basics of forecasting, • It discusses ETS and ARIMA models, • It has chapters on extensions of ETS and ARIMA, including how to use explanatory variables and how to capture multiple frequencies, • It discusses intermittent demand and scale models for ETS, ARIMA and regression, • It covers diagnostics tools for ADAM and how to produce forecasts with it, • It does all of that with examples in R.







Intermittent Demand Forecasting


Book Description

INTERMITTENT DEMAND FORECASTING The first text to focus on the methods and approaches of intermittent, rather than fast, demand forecasting Intermittent Demand Forecasting is for anyone who is interested in improving forecasts of intermittent demand products, and enhancing the management of inventories. Whether you are a practitioner, at the sharp end of demand planning, a software designer, a student, an academic teaching operational research or operations management courses, or a researcher in this field, we hope that the book will inspire you to rethink demand forecasting. If you do so, then you can contribute towards significant economic and environmental benefits. No prior knowledge of intermittent demand forecasting or inventory management is assumed in this book. The key formulae are accompanied by worked examples to show how they can be implemented in practice. For those wishing to understand the theory in more depth, technical notes are provided at the end of each chapter, as well as an extensive and up-to-date collection of references for further study. Software developments are reviewed, to give an appreciation of the current state of the art in commercial and open source software. “Intermittent demand forecasting may seem like a specialized area but actually is at the center of sustainability efforts to consume less and to waste less. Boylan and Syntetos have done a superb job in showing how improvements in inventory management are pivotal in achieving this. Their book covers both the theory and practice of intermittent demand forecasting and my prediction is that it will fast become the bible of the field.” —Spyros Makridakis, Professor, University of Nicosia, and Director, Institute for the Future and the Makridakis Open Forecasting Center (MOFC). “We have been able to support our clients by adopting many of the ideas discussed in this excellent book, and implementing them in our software. I am sure that these ideas will be equally helpful for other supply chain software vendors and for companies wanting to update and upgrade their capabilities in forecasting and inventory management.” —Suresh Acharya, VP, Research and Development, Blue Yonder. “As product variants proliferate and the pace of business quickens, more and more items have intermittent demand. Boylan and Syntetos have long been leaders in extending forecasting and inventory methods to accommodate this new reality. Their book gathers and clarifies decades of research in this area, and explains how practitioners can exploit this knowledge to make their operations more efficient and effective.” —Thomas R. Willemain, Professor Emeritus, Rensselaer Polytechnic Institute.




Forecasting with Exponential Smoothing


Book Description

Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.




Elements of Forecasting


Book Description

ELEMENTARY FORECASTING focuses on the core techniques of widest applicability. The author illustrates all methods with detailed real-world applications, many of them international in flavor, designed to mimic typical forecasting situations.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Global Trends 2040


Book Description

"The ongoing COVID-19 pandemic marks the most significant, singular global disruption since World War II, with health, economic, political, and security implications that will ripple for years to come." -Global Trends 2040 (2021) Global Trends 2040-A More Contested World (2021), released by the US National Intelligence Council, is the latest report in its series of reports starting in 1997 about megatrends and the world's future. This report, strongly influenced by the COVID-19 pandemic, paints a bleak picture of the future and describes a contested, fragmented and turbulent world. It specifically discusses the four main trends that will shape tomorrow's world: - Demographics-by 2040, 1.4 billion people will be added mostly in Africa and South Asia. - Economics-increased government debt and concentrated economic power will escalate problems for the poor and middleclass. - Climate-a hotter world will increase water, food, and health insecurity. - Technology-the emergence of new technologies could both solve and cause problems for human life. Students of trends, policymakers, entrepreneurs, academics, journalists and anyone eager for a glimpse into the next decades, will find this report, with colored graphs, essential reading.




Forecasting in Financial and Sports Gambling Markets


Book Description

A guide to modeling analyses for financial and sports gambling markets, with a focus on major current events Addressing the highly competitive and risky environments of current-day financial and sports gambling markets, Forecasting in Financial and Sports Gambling Markets details the dynamic process of constructing effective forecasting rules based on both graphical patterns and adaptive drift modeling (ADM) of cointegrated time series. The book uniquely identifies periods of inefficiency that these markets oscillate through and develops profitable forecasting models that capitalize on irrational behavior exhibited during these periods. Providing valuable insights based on the author's firsthand experience, this book utilizes simple, yet unique, candlestick charts to identify optimal time periods in financial markets and optimal games in sports gambling markets for which forecasting models are likely to provide profitable trading and wagering outcomes. Featuring detailed examples that utilize actual data, the book addresses various topics that promote financial and mathematical literacy, including: Higher order ARMA processes in financial markets The effects of gambling shocks in sports gambling markets Cointegrated time series with model drift Modeling volatility Throughout the book, interesting real-world applications are presented, and numerous graphical procedures illustrate favorable trading and betting opportunities, which are accompanied by mathematical developments in adaptive model forecasting and risk assessment. A related web site features updated reviews in sports and financial forecasting and various links on the topic. Forecasting in Financial and Sports Gambling Markets is an excellent book for courses on financial economics and time series analysis at the upper-undergraduate and graduate levels. The book is also a valuable reference for researchers and practitioners working in the areas of retail markets, quant funds, hedge funds, and time series. Also, anyone with a general interest in learning about how to profit from the financial and sports gambling markets will find this book to be a valuable resource.




Practical Time Series Analysis


Book Description

Time series data analysis is increasingly important due to the massive production of such data through the internet of things, the digitalization of healthcare, and the rise of smart cities. As continuous monitoring and data collection become more common, the need for competent time series analysis with both statistical and machine learning techniques will increase. Covering innovations in time series data analysis and use cases from the real world, this practical guide will help you solve the most common data engineering and analysis challengesin time series, using both traditional statistical and modern machine learning techniques. Author Aileen Nielsen offers an accessible, well-rounded introduction to time series in both R and Python that will have data scientists, software engineers, and researchers up and running quickly. You’ll get the guidance you need to confidently: Find and wrangle time series data Undertake exploratory time series data analysis Store temporal data Simulate time series data Generate and select features for a time series Measure error Forecast and classify time series with machine or deep learning Evaluate accuracy and performance




Big Data Analytics


Book Description

This book constitutes the refereed proceedings of the 6th International Conference on Big Data analytics, BDA 2018, held in Warangal, India, in December 2018. The 29 papers presented in this volume were carefully reviewed and selected from 93 submissions. The papers are organized in topical sections named: big data analytics: vision and perspectives; financial data analytics and data streams; web and social media data; big data systems and frameworks; predictive analytics in healthcare and agricultural domains; and machine learning and pattern mining.