Forecasting: principles and practice


Book Description

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.




Principles of Forecasting


Book Description

This handbook summarises knowledge from experts and empirical studies. It provides guidelines that can be applied in fields such as economics, sociology, and psychology. Includes a comprehensive forecasting dictionary.







Manager's Guide to Forecasting


Book Description




Business Forecasting


Book Description

Discover the role of machine learning and artificial intelligence in business forecasting from some of the brightest minds in the field In Business Forecasting: The Emerging Role of Artificial Intelligence and Machine Learning accomplished authors Michael Gilliland, Len Tashman, and Udo Sglavo deliver relevant and timely insights from some of the most important and influential authors in the field of forecasting. You'll learn about the role played by machine learning and AI in the forecasting process and discover brand-new research, case studies, and thoughtful discussions covering an array of practical topics. The book offers multiple perspectives on issues like monitoring forecast performance, forecasting process, communication and accountability for forecasts, and the use of big data in forecasting. You will find: Discussions on deep learning in forecasting, including current trends and challenges Explorations of neural network-based forecasting strategies A treatment of the future of artificial intelligence in business forecasting Analyses of forecasting methods, including modeling, selection, and monitoring In addition to the Foreword by renowned researchers Spyros Makridakis and Fotios Petropoulos, the book also includes 16 "opinion/editorial" Afterwords by a diverse range of top academics, consultants, vendors, and industry practitioners, each providing their own unique vision of the issues, current state, and future direction of business forecasting. Perfect for financial controllers, chief financial officers, business analysts, forecast analysts, and demand planners, Business Forecasting will also earn a place in the libraries of other executives and managers who seek a one-stop resource to help them critically assess and improve their own organization's forecasting efforts.




Demand-Driven Forecasting


Book Description

Praise for Demand-Driven Forecasting A Structured Approach to Forecasting "There are authors of advanced forecasting books who take an academic approach to explaining forecast modeling that focuses on the construction of arcane algorithms and mathematical proof that are not very useful for forecasting practitioners. Then, there are other authors who take a general approach to explaining demand planning, but gloss over technical content required of modern forecasters. Neither of these approaches is well-suited for helping business forecasters critically identify the best demand data sources, effectively apply appropriate statistical forecasting methods, and properly design efficient demand planning processes. In Demand-Driven Forecasting, Chase fills this void in the literature and provides the reader with concise explanations for advanced statistical methods and credible business advice for improving ways to predict demand for products and services. Whether you are an experienced professional forecasting manager, or a novice forecast analyst, you will find this book a valuable resource for your professional development." —Daniel Kiely, Senior Manager, Epidemiology, Forecasting & Analytics, Celgene Corporation "Charlie Chase has given forecasters a clear, responsible approach for ending the timeless tug of war between the need for 'forecast rigor' and the call for greater inclusion of 'client judgment.' By advancing the use of 'domain knowledge' and hypothesis testing to enrich base-case forecasts, he has empowered professional forecasters to step up and impact their companies' business results favorably and profoundly, all the while enhancing the organizational stature of forecasters broadly." —Bob Woodard, Vice President, Global Consumer and Customer Insights, Campbell Soup Company




Quality Measures in Data Mining


Book Description

This book presents recent advances in quality measures in data mining.




Frequency-Domain Models


Book Description




The Forecasting Accuracy of Major Time Series Methods


Book Description

STATISTICS. ECONOMETRIC METHODS. EXTRAPOLATION METHODS. BOX-JENKINS. AEP FILTERING. BAYESIAN FORECASTING. NAIVE METHOD. MOVING AVERAGE METHOD. EXPONENTIAL SMOOTHING METHOD. REGRESSION METHOD. FORSYS METHOD. SALES FORECASTING.




Traffic Forecasting Accuracy Assessment Research


Book Description

Accurate traffic forecasts for highway planning and design help ensure that public dollars are spent wisely. Forecasts inform discussions about whether, when, how, and where to invest public resources to manage traffic flow, widen and remodel existing facilities, and where to locate, align, and how to size new ones. The TRB National Cooperative Highway Research Program's NCHRP Report 934: Traffic Forecasting Accuracy Assessment Research seeks to develop a process and methods by which to analyze and improve the accuracy, reliability, and utility of project-level traffic forecasts. The report also includes tools for engineers and planners who are involved in generating traffic forecasts, including: Quantile Regression Models, a Traffic Accuracy Assessment, a Forecast Archive Annotated Outline, a Deep Dive Annotated Outline, and Deep Dive Assessment Tables.