Foreign DNA in Mammalian Systems


Book Description

It is unlikely that the established genomes of present day organisms remain stable forever. It is conceivable that foreign DNA can gain entry into individual cells of an organism. Foreign DNA is defined as genetic material that derives from another organism of the same or a different species. The natural environment is heavily "contaminated" with such foreign DNA, and mammals, like other organisms, are frequently exposed to foreign DNA in their environment, notably by ingesting their daily food supply. By necessity, the gastrointestinal tract also of all mammalian organisms is constantly in contact with foreign DNA. So far, next to nothing is known about defense mechanisms in mammals against the intrusion of foreign DNA. At least in cells growing in culture, the uptake and genomic fixation by integration of foreign DNA can readily be demonstrated. For a number of reasons, the author has considered it important to investigate the phenomena and mechanisms involved in the interaction of foreign DNA with mammalian cells and organisms in detail.




Foreign DNA in Mammalian Systems


Book Description

It is unlikely that the established genomes of present day organisms remain stable forever. It is conceivable that foreign DNA can gain entry into individual cells of an organism. Foreign DNA is defined as genetic material that derives from another organism of the same or a different species. The natural environment is heavily "contaminated" with such foreign DNA, and mammals, like other organisms, are frequently exposed to foreign DNA in their environment, notably by ingesting their daily food supply. By necessity, the gastrointestinal tract also of all mammalian organisms is constantly in contact with foreign DNA. So far, next to nothing is known about defense mechanisms in mammals against the intrusion of foreign DNA. At least in cells growing in culture, the uptake and genomic fixation by integration of foreign DNA can readily be demonstrated. For a number of reasons, the author has considered it important to investigate the phenomena and mechanisms involved in the interaction of foreign DNA with mammalian cells and organisms in detail.







CRISPR


Book Description

“An excellent compendium of all things CRISPR from some of the leading minds in the field. With thorough coverage from every angle and beautifully detailed illustrations, this book is not to be missed!” Jennifer A. Doudna, Professor of Chemistry, Biochemistry & Molecular Biology, UC Berkeley; Founder, Innovative Genomics Institute; Nobel Laureate and coinventor of CRISPR technology “This journey through CRISPR biology and several of its breakthrough applications offers an exciting glimpse into one of the most beautiful and compelling fields in the life sciences.” David R. Liu, Director of the Merkin Institute at the Broad Institute of MIT and Harvard; Professor of Chemistry and Chemical Biology at Harvard University; coinventor of base editing and prime editing “A must read! The CRISPR topics, written by world-leading experts, span from the fascinating mechanistic underpinnings to the ingenious applications. One can read from start to finish or pick and choose themes. Either way, the book delivers utterly enjoyable learning!” Bonnie Bassler, Squibb Professor and Chair, Princeton University Department of Molecular Biology; Howard Hughes Medical Institute Investigator CRISPR-Cas systems have revolutionized the science of gene editing and their possible applications continue to expand, from basic research to potentially groundbreaking medical and commercial uses. Led by a distinguished team of editors, CRISPR: Biology and Applications explores the subject matter needed to delve into this fascinating area. Topics covered include: Classification and molecular mechanisms of CRISPR-Cas systems CRISPR-Cas evolution, regulation, expression, and function Uses for gene editing and modulation of gene expression CRISPR-based antimicrobials and phage resistance for medical and industrial purposes Written by internationally renowned authors, CRISPR: Biology and Applications serves as both an introductory guide for those new to the field and an authoritative reference for seasoned researchers whose work touches this evolving and headline- making science.




Safety of Genetically Engineered Foods


Book Description

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.




New Directions for Biosciences Research in Agriculture


Book Description

Authored by an integrated committee of plant and animal scientists, this review of newer molecular genetic techniques and traditional research methods is presented as a compilation of high-reward opportunities for agricultural research. Directed to the Agricultural Research Service and the agricultural research community at large, the volume discusses biosciences research in genetic engineering, animal science, plant science, and plant diseases and insect pests. An optimal climate for productive research is discussed.




Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012)


Book Description

The 2012 International Conference on Applied Biotechnology (ICAB 2012) was held in Tianjin, China on October 18-19, 2012. It provides not only a platform for domestic and foreign researchers to exchange their ideas and experiences with the application-oriented research of biotechnology, but also an opportunity to promote the development and prosperity of the biotechnology industry. The proceedings of ICAB 2012 mainly focus on the world's latest scientific research and techniques in applied biotechnology, including Industrial Microbial Technology, Food Biotechnology, Pharmaceutical Biotechnology, Environmental Biotechnology, Marine Biotechnology, Agricultural Biotechnology, Biological Materials and Bio-energy Technology, Advances in Biotechnology, and Future Trends in Biotechnology. These proceedings are intended for scientists and researchers engaging in applied biotechnology. Professor Pingkai Ouyang is the President of the Nanjing University of Technology, China. Professor Tongcun Zhang is the Director of the Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education at the College of Bioengineering, Tianjin University of Science and Technology, China. Dr. Samuel Kaplan is a Professor at the Department of Microbiology & Molecular Genetics at the University of Texas at Houston Medical School, Houston, Texas, USA. Dr. Bill Skarnes is a Professor at Wellcome Trust Sanger Institute, United Kingdom.




Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.




Reprogramming the Genome: Applications of CRISPR-Cas in non-mammalian systems part A


Book Description

Reprogramming the Genome: Applications of CRISPR-Cas in Non-mammalian Systems, Part A presents a collation of chapters written by global, eminent scientists. CRISPR-Cas9 system is an RNA-mediated immune system of bacteria and archaea that protects from bacteriophage infections. It is one of the revolutionized technologies to uplift biology to the next stages. Chapters in this release include An Introduction and applications of CRISPR-Cas Systems, History, evolution and classification of CRISPR-Cas associated systems, CRISPR based bacterial genome editing and removal of pathogens, CRISPR based genome editing and removal of human viruses, CRISPR based development of RNA editing and diagnostic platform, and much more. Additional sections cover Genome engineering in insects for control of vector borne diseases, Development of insect cell line using CRISPR technology, CRISPRing protozoan parasites to better understand the biology of diseases, CRISPR based genome editing of Caenorhabditis elegans, and a variety of other important topics. - Offers a basic understanding and clear picture of genome editing CRISPR-Cas systems in different organisms - Explains how to create an animal model for disease diagnosis/research and reprogram CRISPR for removal of virus, bacteria, fungi, protozoan, and many more - Discusses the advances, patents, applications, challenges and opportunities in CRISPR-Cas9 systems in basic sciences, biomedicine, virology, bacteriology, molecular biology, and many more




Functional Analysis of the Human Genome


Book Description

An excellent review of the relationship between structure and function in the human genome, and a detailed description of some of the important methodologies for unravelling the function of genes and genomic structures.