Foreign-Exchange-Rate Forecasting with Artificial Neural Networks


Book Description

This book focuses on forecasting foreign exchange rates via artificial neural networks (ANNs), creating and applying the highly useful computational techniques of Artificial Neural Networks (ANNs) to foreign-exchange rate forecasting. The result is an up-to-date review of the most recent research developments in forecasting foreign exchange rates coupled with a highly useful methodological approach to predicting rate changes in foreign currency exchanges.




Foreign-Exchange-Rate Forecasting with Artificial Neural Networks


Book Description

The book focuses on forecasting foreign exchange rates via artificial neural networks. It creates and applies the highly useful computational techniques of Artificial Neural Networks (ANNs) to foreign-exchange-rate forecasting. The result is an up-to-date review of the most recent research developments in forecasting foreign exchange rates coupled with a highly useful methodological approach to predicting rate changes in foreign currency exchanges. Foreign Exchange Rate Forecasting with Artificial Neural Networks is targeted at both the academic and practitioner audiences. Managers, analysts and technical practitioners in financial institutions across the world will have considerable interest in the book, and scholars and graduate students studying financial markets and business forecast will also have considerable interest in the book. The book discusses the most important advances in foreign-exchange-rate forecasting and then systematically develops a number of new, innovative, and creatively crafted neural network models that reduce the volatility and speculative risk in the forecasting of foreign exchange rates. The book discusses and illustrates three general types of ANN models. Each of these model types reflect the following innovative and effective characteristics: (1) The first model type is a three-layer, feed-forward neural network with instantaneous learning rates and adaptive momentum factors that produce learning algorithms (both online and offline algorithms) to predict foreign exchange rates. (2) The second model type is the three innovative hybrid learning algorithms that have been created by combining ANNs with exponential smoothing, generalized linear auto-regression, and genetic algorithms. Each of these three hybrid algorithms has been crafted to forecast various aspects synergetic performance. (3) The third model type is the three innovative ensemble learning algorithms that combining multiple neural networks into an ensemble output. Empirical results reveal that these creative models can produce better performance with high accuracy or high efficiency.




Exchange Rate Forecasting


Book Description




Applications and Innovations in Intelligent Systems XIII


Book Description

The papers in this volume are the refereed application papers presented at AI-2005, the Twenty-fifth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, held in Cambridge in December 2005. The papers present new and innovative developments in the field, divided into sections on Synthesis and Prediction, Scheduling and Search, Diagnosis and Monitoring, Classification and Design, and Analysis and Evaluation. This is the thirteenth volume in the Applications and Innovations series. The series serves as a key reference on the use of AI Technology to enable organisations to solve complex problems and gain significant business benefits. The Technical Stream papers are published as a companion volume under the title Research and Development in Intelligent Systems XXII.




Fuzzy Sets in Management, Economics, and Marketing


Book Description

The rapid changes that have taken place globally on the economic, social and business fronts characterized the 20th century. The magnitude of these changes has formed an extremely complex and unpredictable decision-making framework, which is difficult to model through traditional approaches. The main purpose of this book is to present the most recent advances in the development of innovative techniques for managing the uncertainty that prevails in the global economic and management environments. These techniques originate mainly from fuzzy sets theory. However, the book also explores the integration of fuzzy sets with other decision support and modeling disciplines, such as multicriteria decision aid, neural networks, genetic algorithms, machine learning, chaos theory, etc. The presentation of the advances in these fields and their real world applications adds a new perspective to the broad fields of management science and economics. Contents: Decision Making, Management and Marketing: Algorithms for Orderly Structuring of Financial OC ObjectsOCO (J Gil-Aluja); A Fuzzy Goal Programming Model for Evaluating a Hospital Service Performance (M Arenas et al.); A Group Decision Making Method Using Fuzzy Triangular Numbers (J L Garc a-Lapresta et al.); Developing Sorting Models Using Preference Disaggregation Analysis: An Experimental Investigation (M Doumpos & C Zopounidis); Stock Markets and Portfolio Management: The Causality Between Interest Rate, Exchange Rate and Stock Price in Emerging Markets: The Case of the Jakarta Stock Exchange (J Gupta et al.); Fuzzy Cognitive Maps in Stock Market (D Koulouriotis et al.); Neural Network vs Linear Models of Stock Returns: An Application to the UK and German Stock Market Indices (A Kanas); Corporate Finance and Banking Management: Expertons and Behaviour of Companies with Regard to the Adequacy Between Business Decisions and Objectives (A Couturier & B Fioleau); Multiple Fuzzy IRR in the Financial Decision Environment (S F Gonzilez et al.); An Automated Knowledge Generation Approach for Managing Credit Scoring Problems (M Michalopoulos et al.); and other papers. Readership: Financial managers, economists, management scientists and computer scientists."




Neural Networks in Business Forecasting


Book Description

Forecasting is one of the most important activities that form the basis for strategic, tactical, and operational decisions in all business organizations. Recently, neural networks have emerged as an important tool for business forecasting. Neural Networks in Business Forecasting provides researchers and practitioners with some recent advances in applying neural networks to business forecasting. A number of case studies demonstrating the innovative or successful applications of neural networks to many areas of business as well as methods to improve neural network forecasting performance are presented.




Advances in Distributed Computing and Machine Learning


Book Description

This book presents recent advances in the field of scalable distributed computing including state-of-the-art research in the field of Cloud Computing, the Internet of Things (IoT), and Blockchain in distributed environments along with applications and findings in broad areas including Data Analytics, AI, and Machine Learning to address complex real-world problems. It features selected high-quality research papers from the 2nd International Conference on Advances in Distributed Computing and Machine Learning (ICADCML 2021), organized by the Department of Computer Science and Information Technology, Institute of Technical Education and Research(ITER), Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India.




Neural Networks in Business


Book Description

"For professionals, students, and academics interested in applying neural networks to a variety of business applications, this reference book introduces the three most common neural network models and how they work. A wide range of business applications and a series of global case studies are presented to illustrate the neural network models provided. Each model or technique is discussed in detail and used to solve a business problem such as managing direct marketing, calculating foreign exchange rates, and improving cash flow forecasting."




Empirical Asset Pricing


Book Description

An introduction to the theory and methods of empirical asset pricing, integrating classical foundations with recent developments. This book offers a comprehensive advanced introduction to asset pricing, the study of models for the prices and returns of various securities. The focus is empirical, emphasizing how the models relate to the data. The book offers a uniquely integrated treatment, combining classical foundations with more recent developments in the literature and relating some of the material to applications in investment management. It covers the theory of empirical asset pricing, the main empirical methods, and a range of applied topics. The book introduces the theory of empirical asset pricing through three main paradigms: mean variance analysis, stochastic discount factors, and beta pricing models. It describes empirical methods, beginning with the generalized method of moments (GMM) and viewing other methods as special cases of GMM; offers a comprehensive review of fund performance evaluation; and presents selected applied topics, including a substantial chapter on predictability in asset markets that covers predicting the level of returns, volatility and higher moments, and predicting cross-sectional differences in returns. Other chapters cover production-based asset pricing, long-run risk models, the Campbell-Shiller approximation, the debate on covariance versus characteristics, and the relation of volatility to the cross-section of stock returns. An extensive reference section captures the current state of the field. The book is intended for use by graduate students in finance and economics; it can also serve as a reference for professionals.




Artificial Intelligence and Machine Learning in Business Management


Book Description

Artificial Intelligence and Machine Learning in Business Management The focus of this book is to introduce artificial intelligence (AI) and machine learning (ML) technologies into the context of business management. The book gives insights into the implementation and impact of AI and ML to business leaders, managers, technology developers, and implementers. With the maturing use of AI or ML in the field of business intelligence, this book examines several projects with innovative uses of AI beyond data organization and access. It follows the Predictive Modeling Toolkit for providing new insight on how to use improved AI tools in the field of business. It explores cultural heritage values and risk assessments for mitigation and conservation and discusses on-shore and off-shore technological capabilities with spatial tools for addressing marketing and retail strategies, and insurance and healthcare systems. Taking a multidisciplinary approach for using AI, this book provides a single comprehensive reference resource for undergraduate, graduate, business professionals, and related disciplines.