Handbook of Algebra


Book Description

Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed. - Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes




Combinatorics, Complexity, and Chance


Book Description

Professor Dominic Welsh has made significant contributions to the fields of combinatorics and discrete probability, including matroids, complexity, and percolation, and has taught, influenced and inspired generations of students and researchers in mathematics. This volume summarizes and reviews the consistent themes from his work through a series of articles written by renowned experts. These articles contain original research work, set in a broader context by the inclusion of review material. As a reference text in its own right, this book will be valuable to academic researchers, research students, and others seeking an introduction to the relevant contemporary aspects of these fields.




Algebraic Statistics


Book Description

Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.




Recent Developments in Representation Theory


Book Description

This volume contains selected expository lectures delivered at the Maurice Auslander Distinguished Lectures and International Conference, held May 1–6, 2014, at the Woods Hole Oceanographic Institute, Woods Hole, MA. Several significant developments of the last decade in representation theory of finite-dimensional algebras are related to combinatorics. Three of the five lectures in this volume deal, respectively, with the Catalan combinatorics, the combinatorics of Gelfand-Zetlin polytopes, and the combinatorics of tilting modules. The remaining papers present history and recent advances in the study of left orders in left Artinian rings and a survey on invariant theory of Artin-Schelter regular algebras.




Handbook of Enumerative Combinatorics


Book Description

Presenting the state of the art, the Handbook of Enumerative Combinatorics brings together the work of today's most prominent researchers. The contributors survey the methods of combinatorial enumeration along with the most frequent applications of these methods.This important new work is edited by Miklos Bona of the University of Florida where he




Towards an Information Theory of Complex Networks


Book Description

For over a decade, complex networks have steadily grown as an important tool across a broad array of academic disciplines, with applications ranging from physics to social media. A tightly organized collection of carefully-selected papers on the subject, Towards an Information Theory of Complex Networks: Statistical Methods and Applications presents theoretical and practical results about information-theoretic and statistical models of complex networks in the natural sciences and humanities. The book's major goal is to advocate and promote a combination of graph-theoretic, information-theoretic, and statistical methods as a way to better understand and characterize real-world networks. This volume is the first to present a self-contained, comprehensive overview of information-theoretic models of complex networks with an emphasis on applications. As such, it marks a first step toward establishing advanced statistical information theory as a unified theoretical basis of complex networks for all scientific disciplines and can serve as a valuable resource for a diverse audience of advanced students and professional scientists. While it is primarily intended as a reference for research, the book could also be a useful supplemental graduate text in courses related to information science, graph theory, machine learning, and computational biology, among others.




Recent Trends in Combinatorics


Book Description

This volume presents some of the research topics discussed at the 2014-2015 Annual Thematic Program Discrete Structures: Analysis and Applications at the Institute for Mathematics and its Applications during Fall 2014, when combinatorics was the focus. Leading experts have written surveys of research problems, making state of the art results more conveniently and widely available. The three-part structure of the volume reflects the three workshops held during Fall 2014. In the first part, topics on extremal and probabilistic combinatorics are presented; part two focuses on additive and analytic combinatorics; and part three presents topics in geometric and enumerative combinatorics. This book will be of use to those who research combinatorics directly or apply combinatorial methods to other fields.




Feynman Amplitudes, Periods and Motives


Book Description

This volume contains the proceedings of the International Research Workshop on Periods and Motives--A Modern Perspective on Renormalization, held from July 2-6, 2012, at the Instituto de Ciencias Matemáticas, Madrid, Spain. Feynman amplitudes are integrals attached to Feynman diagrams by means of Feynman rules. They form a central part of perturbative quantum field theory, where they appear as coefficients of power series expansions of probability amplitudes for physical processes. The efficient computation of Feynman amplitudes is pivotal for theoretical predictions in particle physics. Periods are numbers computed as integrals of algebraic differential forms over topological cycles on algebraic varieties. The term originated from the period of a periodic elliptic function, which can be computed as an elliptic integral. Motives emerged from Grothendieck's "universal cohomology theory", where they describe an intermediate step between algebraic varieties and their linear invariants (cohomology). The theory of motives provides a conceptual framework for the study of periods. In recent work, a beautiful relation between Feynman amplitudes, motives and periods has emerged. The articles provide an exciting panoramic view on recent developments in this fascinating and fruitful interaction between pure mathematics and modern theoretical physics.