Formation and Evolution of Black Holes in the Galaxy


Book Description

In published papers H A Bethe and G E Brown worked out the collapse of large stars and supernova explosions. They went on to evolve binaries of compact stars, finding that in the standard scenario the first formed neutron star always went into a black hole in common envelope evolution. C-H Lee joined them in the study of black hole binaries and gamma ray bursts. They found the black holes to be the fossils of the gamma ray bursts. From their properties they could reconstruct features of the burst and of the accompanying hypernova explosions. This invaluable book contains 23 papers on astrophysics, chiefly on compact objects, written over 23 years. The papers are accompanied by illuminating commentary. In addition there is an appendix on kaon condensation which the editors believe to be relevant to the equation of state in neutron stars, and to explain why black holes are formed at relatively low masses.




Galaxy Formation and Evolution


Book Description

A coherent introduction for researchers in astronomy, particle physics, and cosmology on the formation and evolution of galaxies.




Quasars and Black Holes


Book Description

"An introduction to quasars and black holes with information about their formation and characteristics. Includes diagrams, fun facts, a glossary, a resource list, and an index"--Provided by publisher.




Formation Of The First Black Holes


Book Description

The formation of the first supermassive black holes is one of the main open questions in our understanding of high-redshift structure formation. In this book, we aim to provide a summary of state-of-the-art modern research on this topic, exploring the formation of massive black holes from a fluid-dynamical, stellar-dynamical and chemical perspective. The book thus presents a solid theoretical foundation, a comparison with current observations and future observational perspectives with upcoming missions such as the Square Kilometre Array, the European Extremely Large Telescope, the Euclid satellite as well as possible detections via gravitational waves.




Dynamics and Evolution of Galactic Nuclei


Book Description

Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author. For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.




Introduction to Galaxy Formation and Evolution


Book Description

A comprehensive examination of nearly fourteen billion years of galaxy formation and evolution, from primordial gas to present-day galaxies.




Joint Evolution of Black Holes and Galaxies


Book Description

Black holes are among the most mysterious objects that the human mind has been capable of imagining. As pure mathematical constructions, they are tools for exploiting the fundamental laws of physics. As astronomical sources, they are part of our cosmic landscape, warping space-time, coupled to the large-scale properties and life cycle of their host




Galaxies


Book Description

Galaxies are vast ensembles of stars, gas and dust, embedded in dark matter halos. They are the basic building blocks of the Universe, gathered in groups, clusters and super-clusters. They exist in many forms, either as spheroids or disks. Classifications, such as the Hubble sequence (based on mass concentration and gas fraction) and the colormagnitude diagram (which separates a blue cloud from a red sequence) help to understand their formation and evolution. Galaxies spend a large part of their lives in the blue cloud, forming stars as spiral or dwarf galaxies. Then, via a mechanism that is still unclear, they stop forming stars and quietly end in the red sequence, as spheroids. This transformation may be due to galaxy interactions, or because of the feedback of active nuclei, through the energy released by their central super-massive black holes. These mechanisms could explain the history of cosmic star formation, the rate of which was far greater in the first half of the UniverseÂs life. Galaxies delves into all of these surrounding subjects in six chapters written by dedicated, specialist astronomers and researchers in the field, from their numerical simulations to their evolutions.




The First Galaxies in the Universe


Book Description

This book provides a comprehensive, self-contained introduction to one of the most exciting frontiers in astrophysics today: the quest to understand how the oldest and most distant galaxies in our universe first formed. Until now, most research on this question has been theoretical, but the next few years will bring about a new generation of large telescopes that promise to supply a flood of data about the infant universe during its first billion years after the big bang. This book bridges the gap between theory and observation. It is an invaluable reference for students and researchers on early galaxies. The First Galaxies in the Universe starts from basic physical principles before moving on to more advanced material. Topics include the gravitational growth of structure, the intergalactic medium, the formation and evolution of the first stars and black holes, feedback and galaxy evolution, reionization, 21-cm cosmology, and more. Provides a comprehensive introduction to this exciting frontier in astrophysics Begins from first principles Covers advanced topics such as the first stars and 21-cm cosmology Prepares students for research using the next generation of large telescopes Discusses many open questions to be explored in the coming decade




The Hubble Deep Field


Book Description

The Hubble Deep Field (HDF) is the deepest optical image of the Universe ever obtained. It is the result of a 150-orbit observing programme with the Hubble Space Telescope. It provides a unique resource for researchers studying the formation and evolution of stars and galaxies. This timely volume provides the first comprehensive overview of the HDF and its scientific impact on our understanding in cosmology. It presents articles by a host of world experts who gathered together at an international conference at the Space Telescope Science Institute. The contributions combine observations of the HDF at a variety of wavelengths with the latest theoretical progress in our understanding of the cosmic history of star and galaxy formation. The HDF is set to revolutionize our understanding in cosmology. This book therefore provides an indispensable reference for all graduate students and researchers in observational or theoretical cosmology.