Formation and Evolution of Solids in Space


Book Description

Interstellar dust, meteorites, interplanetary dust particles (IDP's), the zodiacal light, comets, comet dust. Where do they come from, what are they made of, how do they evolve, and finally, are there connections between them? These are the questions discussed in this volume by some of the world's outstanding experts in their respective fields. The techniques used for studying the `small' solid objects of space are thoroughly discussed. Some of the methods involve a synthetic approach using the laboratory to create analog environments and materials which are believed to resemble those in space. Others use direct laboratory methods with state-of-the-art analytical tools to study the material of the objects themselves - meteorites, IDP'S. And others apply the latest in astronomical facilities to provide quantitative data on the material properties of the solids which can only be deduced from remote observations, These are compared with the laboratory results. In one instance there was a possibility to study a solar system body in situ and that was the case of comet Halley and some of the results of these studies obtained from space `laboratories' launched to meet it are discussed here. Finally, there are theoretical papers which are aimed at bridging the results of observational and laboratory methods. This book is recommended to senior scientists as well as graduate students who wish to pursue research in interstellar and solar system astronomy and their connections.




Formation, Evolution, and Dynamics of Young Solar Systems


Book Description

This book's interdisciplinary scope aims at bridging various communities: 1) cosmochemists, who study meteoritic samples from our own solar system, 2) (sub-) millimetre astronomers, who measure the distribution of dust and gas of star-forming regions and planet-forming discs, 3) disc modellers, who describe the complex photo-chemical structure of parametric discs to fit these to observation, 4) computational astrophysicists, who attempt to decipher the dynamical structure of magnetised gaseous discs, and the effects the resulting internal structure has on the aerodynamic re-distribution of embedded solids, 5) theoreticians in planet formation theory, who aim to piece it all together eventually arriving at a coherent holistic picture of the architectures of planetary systems discovered by 6) the exoplanet observers, who provide us with unprecedented samples of exoplanet worlds. Combining these diverse fields the book sheds light onto the riddles that research on planet formation is currently confronted with, and paves the way for a comprehensive understanding of the formation, evolution, and dynamics of young solar systems. The chapters ‘Chondrules – Ubiquitous Chondritic Solids Tracking the Evolution of the Solar Protoplanetary Disk’, ‘Dust Coagulation with Porosity Evolution’ and ‘The Emerging Paradigm of Pebble Accretion’ are published open access under a CC BY 4.0 license via link.springer.com.




Galaxy Formation and Evolution


Book Description

An Astronomical Life – Observing the Depths of the Universe” Though science as a subject can be di?cult, what has been more important for me is that its practice can also be rewarding fun! This book is crafted to expose the reader to the excitement of modern observational cosmology through the study of galaxy evolution over space and cosmic time. Recent extragalactic research has led to many rapid advances in the ?eld. Even a suitable skeptic of certain pronouncements about the age and structure of the Universe should be pleased with the large steps that have been taken in furthering our understanding of the Universe since the early 1990’s. My personal involvement in galaxy research goes back to the 1960’s. At that point, galaxies were easily recognized and partially understood as organized c- lections of stars and gas. What their masses were presented a problem, which I supposed would just fade away. But fade it didn’t. Distant active nuclei and quasars were discovered in the mid-1960’s. A c- mon view of QSOs was that they have large redshifts, but what use are they for cosmology or normal galaxy astrophysics? I shared that conclusion. My expec- tions fell below their potential utility. In short, the Universe of our expectations rarely matches the Universe as it is discovered.




Solid State Astrochemistry


Book Description

The fundamental role that Astrochemistry plays into regulating the processes that in interstellar clouds lead to the formation of stars, and how these processes concur into affecting the shape and the dynamics of galaxies and hence into showing the Universe in the way it appears to us is well established. Together with those occurring in the gas phase a special relevance is recognized to processes that involve interstellar dust grains, the solid component of matter diffused among stars. The school on "Solid State Astrochemistry", held at the Ettore Majorana Centre for Scientific Culture in Erice (Sicily) from the 5th to the 15th of June 2000, was the fifth course of the International School of Space Chemistry. In spite of its very focused aim it was attended by 66 participants from 17 different countries, that in the very special environment provided by the Majorana Centre, discussed in great details the various aspects of the subject.




Frontiers in Surface Science and Interface Science


Book Description

Any notion that surface science is all about semiconductors and coatings is laid to rest by this encyclopedic publication: Bioengineered interfaces in medicine, interstellar dust, DNA computation, conducting polymers, the surfaces of atomic nuclei - all are brought up to date. Frontiers in Surface and Interface Science - a milestone publication deserving a wide readership. It combines a sweeping expert survey of research today with an educated look into the future. It is a future that embraces surface phenomena on scales from the subatomic to the galactic, as well as traditional topics like semiconductor design, catalysis, and surface processing, modeling and characterization. And, great efforts have been made to express sophisticated ideas in an attractive and accessible way. Nanotechnology, surfaces for DNA computation, polymer-based electronics, soft surfaces, interstellar surface chemistry - all feature in this comprehensive collection.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Toward a New Millennium in Galaxy Morphology


Book Description

South Africa - a land of paradigm shifts. A land where we are willing to leave behind the old, to bravely accept the new. What do we need to exit the dark ages in the morphology of galaxies? How prevalent is the cherishing of old concepts? Traditional morphology has been `mask-oriented', focusing on masks of dust and gas which may constitute only 5 percent of the dynamical mass of a galaxy. Some of the world's foremost astronomers flew to South Africa to address morphologically related issues at an International Conference, the proceedings of which are contained in this volume. Examine predicted extinction curves for primordial dust at high redshift. Stars evolve; why not dust? Read about the breakdown of the Hubble sequence at a redshift of one. Explore the morphology of rings; the mysteries of metal-rich globular clusters; vigorous star-formation in the Large Magellanic Cloud; the world of secular evolution, where galaxies change their shapes within one Hubble time. And much more. Examine a new kinematical classification scheme of the unmasked, dust-penetrated near-infrared images of spiral galaxies. This volume contains over 80 refereed contributions (including 18 in-depth keynote review articles), 40 pages of questions and answers, a panel discussion transcribed from tape and 24 colour plates. The volume is unique in that contributions from both high and low redshift experts are represented at a level readily accessible to postdoctoral students entering the exciting world of morphology - whether it be of the local, or more distant, Universe.




The Formation and Early Evolution of Stars


Book Description

Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz’s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma–rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high resolution space based observing in its prime. As indicated by the new title two new chapters have been included on proto-planetary disks and young exoplanets. Many more colour images illustrate attractive old and new topics that have evolved in recent years. The author gives updates in theory, fragmentation, dust, and circumstellar disks and emphasizes and strengthens the targeting of graduate students and young researchers, focusing more on computational approaches in this edition.




Atmospheric Evolution on Inhabited and Lifeless Worlds


Book Description

A comprehensive and authoritative text on the formation and evolution of planetary atmospheres, for graduate-level students and researchers.