Formation and Interactions of Topological Defects


Book Description

Topological defects have recently become of great interest in condensed matter physics, particle physics and cosmology. They are the unavoidable remnants of many symmetry breaking phase transitions. Topological defects can play an important role in describing the properties of many condensed matter systems (e.g. superfluids and superconduc tors); they can catalyze many unusual effects in particle physics models and they may be responsible for seeding the density perturbations in the early Universe which de velop into galaxies and the large-scale structure of the Universe. Topological defects are also of great interest in mathematics as nontrivial solutions of nonlinear differential equations stabilized by topological effects. The purpose of the Advanced Study Institute "Formation and Interactions of Topo logical Defects" was to bring together students and practitioners in condensed matter physics, particle physics and cosmology, to give a detailed exposition of the role of topo logical defects in these fields; to explore similarities and differences in the approaches; and to provide a common basis for discussion and future collaborative research on common problems.




Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions


Book Description

Topological defects formed at symmetry-breaking phase transitions play an important role in many different fields of physics. They appear in many condensed-matter systems at low temperature; examples include vortices in superfluid helium-4, a rich variety of defects in helium-3, quantized mag netic flux tubes in type-II superconductors, and disclination lines and other defects in liquid crystals. In cosmology, unified gauge theories of particle interactions suggest a sequence of phase transitions in the very early uni verse some of which may lead to defect formation. In astrophysics, defects play an important role in the dynamics of neutron stars. In 1997 the European Science Foundation started the scientific network "Topological defects" headed by Tom Kibble. This network has provided us with a unique opportunity of establishing a collaboration between the representatives of these very different branches of modern physics. The NATO-ASI (Advanced Study Institute), held in Les Houches in February 1999 thanks to the support of the Scientific Division of NATO, the European Science Foundation and the CNRS, represents a key event of this ESF network. It brought together participants from widely different fields, with diverse expertise and vocabulary, fostering the exchange of ideas. The lectures given by particle physicists, cosmologists and condensed matter physicists are the result of the fruitful collaborations established since 1997 between groups in several European countries and in the U.S.A.




Cosmic Strings and Other Topological Defects


Book Description

Comprehensive introduction to the role of cosmic strings and other topological defects in the universe.




Topological Defects In Cosmology


Book Description

This book is devoted to one of the most relevant problems of modern cosmology: the formation of structures in the framework of big bang cosmology. The standard theory of gravitational instability has met with great success but has also encountered significant difficulties. In this book the alternative possibility offered by topological defects is explored in detail. A pedagogical introduction to the problem is given and several theoretical aspects of the problem are reviewed. Special emphasis is placed on the observable consequences of the presence of topological defects, and in particular their interaction with cosmic background radiation; other observable effects are also discussed. In addition, laboratory experiments on topological defects are dealt with. This book will, for a long time, serve as one of the best references, on the topic for students and researchers in cosmology.




Cosmological Physics


Book Description

A comprehensive and authoritative introduction to contemporary cosmology for advanced undergraduate and graduate students.




Physical Foundations of Cosmology


Book Description

Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.




Topological Defects and the Non-Equilibrium Dynamics of Symmetry Breaking Phase Transitions


Book Description

Topological defects formed at symmetry-breaking phase transitions play an important role in many different fields of physics. They appear in many condensed-matter systems at low temperature; examples include vortices in superfluid helium-4, a rich variety of defects in helium-3, quantized mag netic flux tubes in type-II superconductors, and disclination lines and other defects in liquid crystals. In cosmology, unified gauge theories of particle interactions suggest a sequence of phase transitions in the very early uni verse some of which may lead to defect formation. In astrophysics, defects play an important role in the dynamics of neutron stars. In 1997 the European Science Foundation started the scientific network "Topological defects" headed by Tom Kibble. This network has provided us with a unique opportunity of establishing a collaboration between the representatives of these very different branches of modern physics. The NATO-ASI (Advanced Study Institute), held in Les Houches in February 1999 thanks to the support of the Scientific Division of NATO, the European Science Foundation and the CNRS, represents a key event of this ESF network. It brought together participants from widely different fields, with diverse expertise and vocabulary, fostering the exchange of ideas. The lectures given by particle physicists, cosmologists and condensed matter physicists are the result of the fruitful collaborations established since 1997 between groups in several European countries and in the U.S.A.




Liquid Crystal Colloids


Book Description

This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which deals with elastic deformation of nematic liquid crystals due to inclusions and surface alignment. This is discussed in the context of basic mean field Landau-de Gennes Q-tensor theory, with a brief explanation of the free-energy minimization numerical methods. There then follows an excursion into the topology of complex nematic colloidal structures, colloidal entanglement, knotting and linking. Nematic droplets, shells, handlebodies and chiral topological structures are addressed in separate chapters. The book concludes with an extensive chapter on the photonic properties of nematic dispersions, presenting the concept of integrated soft matter photonics and discussing the concepts of nematic and chiral nematic microlasers, surface-sensitive photonic devices and smectic microfibers. The text is complemented by a large bibliography, explanatory sketches and beautiful micrographs.




The Role of Topology in Materials


Book Description

This book presents the most important advances in the class of topological materials and discusses the topological characterization, modeling and metrology of materials. Further, it addresses currently emerging characterization techniques such as optical and acoustic, vibrational spectroscopy (Brillouin, infrared, Raman), electronic, magnetic, fluorescence correlation imaging, laser lithography, small angle X-ray and neutron scattering and other techniques, including site-selective nanoprobes. The book analyzes the topological aspects to identify and quantify these effects in terms of topology metrics. The topological materials are ubiquitous and range from (i) de novo nanoscale allotropes of carbons in various forms such as nanotubes, nanorings, nanohorns, nanowalls, peapods, graphene, etc. to (ii) metallo-organic frameworks, (iii) helical gold nanotubes, (iv) Möbius conjugated polymers, (v) block co-polymers, (vi) supramolecular assemblies, to (vii) a variety of biological and soft-matter systems, e.g. foams and cellular materials, vesicles of different shapes and genera, biomimetic membranes, and filaments, (viii) topological insulators and topological superconductors, (ix) a variety of Dirac materials including Dirac and Weyl semimetals, as well as (x) knots and network structures. Topological databases and algorithms to model such materials have been also established in this book. In order to understand and properly characterize these important emergent materials, it is necessary to go far beyond the traditional paradigm of microscopic structure-property-function relationships to a paradigm that explicitly incorporates topological aspects from the outset to characterize and/or predict the physical properties and currently untapped functionalities of these advanced materials. Simulation and modeling tools including quantum chemistry, molecular dynamics, 3D visualization and tomography are also indispensable. These concepts have found applications in condensed matter physics, materials science and engineering, physical chemistry and biophysics, and the various topics covered in the book have potential applications in connection with novel synthesis techniques, sensing and catalysis. As such, the book offers a unique resource for graduate students and researchers alike.




Critical Dialogues In Cosmology


Book Description

A special forum on critical issues in cosmology in celebraton of Princeton University's 250th birthday.The proceedings of this conference, held as part of Princeton University's 250th birthday celebrations, features lectures and discussions by many of the world's leading scientists on the status and future of modern cosmology.The volume offers the non-specialist a fascinating insight into the current status of cosmology and the issues of contention at the research frontiers of the science. It constitutes the proceedings of a special conference, held as part of Princeton University's 250 birthday celebrations, featuring lectures and discussions by many of the world's leading scientists on the status and future of modern cosmology. The volume is based on the format of a series of debates in which a range of conventional wisdom is reviewed, defended and critcised by renowned specialists in each field.The technical level of the volume is accessible to a very broad audience of non-specialists. This innovative exchange of ideas at the cutting edge of cosmology therefore offers an unusual opportunity for the average reader to savour the excitement of probing into the ultimate secrets of the universe.