Forms of Mathematical Knowledge


Book Description

What mathematics is entailed in knowing to act in a moment? Is tacit, rhetorical knowledge significant in mathematics education? What is the role of intuitive models in understanding, learning and teaching mathematics? Are there differences between elementary and advanced mathematical thinking? Why can't students prove? What are the characteristics of teachers' ways of knowing? This book focuses on various types of knowledge that are significant for learning and teaching mathematics. The first part defines, discusses and contrasts psychological, philosophical and didactical issues related to various types of knowledge involved in the learning of mathematics. The second part describes ideas about forms of mathematical knowledge that are important for teachers to know and ways of implementing such ideas in preservice and in-service education. The chapters provide a wide overview of current thinking about mathematics learning and teaching which is of interest for researchers in mathematics education and mathematics educators. Topics covered include the role of intuition in mathematics learning and teaching, the growth from elementary to advanced mathematical thinking, the significance of genres and rhetoric for the learning of mathematics and the characterization of teachers' ways of knowing.




Mathematical Knowledge in Teaching


Book Description

The quality of primary and secondary school mathematics teaching is generally agreed to depend crucially on the subject-related knowledge of the teacher. However, there is increasing recognition that effective teaching calls for distinctive forms of subject-related knowledge and thinking. Thus, established ways of conceptualizing, developing and assessing mathematical knowledge for teaching may be less than adequate. These are important issues for policy and practice because of longstanding difficulties in recruiting teachers who are confident and conventionally well-qualified in mathematics, and because of rising concern that teaching of the subject has not adapted sufficiently. The issues to be examined in Mathematical Knowledge in Teaching are of considerable significance in addressing global aspirations to raise standards of teaching and learning in mathematics by developing more effective approaches to characterizing, assessing and developing mathematical knowledge for teaching.




ALTERNATIVE FORMS OF KNOWING (IN) MATHEMATICS


Book Description

This book grew out of a public lecture series, Alternative forms of knowledge construction in mathematics, conceived and organized by the first editor, and held annually at Portland State University from 2006. Starting from the position that mathematics is a human construction, implying that it cannot be separated from its historical, cultural, social, and political contexts, the purpose of these lectures was to provide a public intellectual space to interrogate conceptions of mathematics and mathematics education, particularly by looking at mathematical practices that are not considered relevant to mainstream mathematics education. One of the main thrusts was to contemplate the fundamental question of whose mathematics is to be valorized in a multicultural world, a world in which, as Paolo Freire said, “The intellectual activity of those without power is always characterized asnon-intellectual”. To date, nineteen scholars (including the second editor) have participated in the series. All of the lectures have been streamed for global dissemination at:http://www.media.pdx.edu/dlcmedia/events/AFK/. Most of the speakers contributed a chapter to this book, based either on their original talk or on a related topic. The book is divided into four sections dealing with: • Mathematics and the politics of knowledge • Ethnomathematics • Learning to see mathematically • Mathematics education for social justice.




Quantitative Measures of Mathematical Knowledge


Book Description

The aim of this book is to explore measures of mathematics knowledge, spanning K-16 grade levels. By focusing solely on mathematics content, such as knowledge of mathematical practices, knowledge of ratio and proportions, and knowledge of abstract algebra, this volume offers detailed discussions of specific instruments and tools meant for measuring student learning. Written for assessment scholars and students both in mathematics education and across educational contexts, this book presents innovative research and perspectives on quantitative measures, including their associated purpose statements and validity arguments.




Helping Children Learn Mathematics


Book Description

Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.




The Construction of New Mathematical Knowledge in Classroom Interaction


Book Description

Mathematics is generally considered as the only science where knowledge is uni form, universal, and free from contradictions. „Mathematics is a social product - a 'net of norms', as Wittgenstein writes. In contrast to other institutions - traffic rules, legal systems or table manners -, which are often internally contradictory and are hardly ever unrestrictedly accepted, mathematics is distinguished by coherence and consensus. Although mathematics is presumably the discipline, which is the most differentiated internally, the corpus of mathematical knowledge constitutes a coher ent whole. The consistency of mathematics cannot be proved, yet, so far, no contra dictions were found that would question the uniformity of mathematics" (Heintz, 2000, p. 11). The coherence of mathematical knowledge is closely related to the kind of pro fessional communication that research mathematicians hold about mathematical knowledge. In an extensive study, Bettina Heintz (Heintz 2000) proposed that the historical development of formal mathematical proof was, in fact, a means of estab lishing a communicable „code of conduct" which helped mathematicians make themselves understood in relation to the truth of mathematical statements in a co ordinated and unequivocal way.




Knowing and Learning Mathematics for Teaching


Book Description

There are many questions about the mathematical preparation teachers need. Recent recommendations from a variety of sources state that reforming teacher preparation in postsecondary institutions is central in providing quality mathematics education to all students. The Mathematics Teacher Preparation Content Workshop examined this problem by considering two central questions: What is the mathematical knowledge teachers need to know in order to teach well? How can teachers develop the mathematical knowledge they need to teach well? The Workshop activities focused on using actual acts of teaching such as examining student work, designing tasks, or posing questions, as a medium for teacher learning. The Workshop proceedings, Knowing and Learning Mathematics for Teaching, is a collection of the papers presented, the activities, and plenary sessions that took place.




Knowing and Teaching Elementary Mathematics


Book Description

Studies of teachers in the U.S. often document insufficient subject matter knowledge in mathematics. Yet, these studies give few examples of the knowledge teachers need to support teaching, particularly the kind of teaching demanded by recent reforms in mathematics education. Knowing and Teaching Elementary Mathematics describes the nature and development of the knowledge that elementary teachers need to become accomplished mathematics teachers, and suggests why such knowledge seems more common in China than in the United States, despite the fact that Chinese teachers have less formal education than their U.S. counterparts. The anniversary edition of this bestselling volume includes the original studies that compare U.S and Chinese elementary school teachers’ mathematical understanding and offers a powerful framework for grasping the mathematical content necessary to understand and develop the thinking of school children. Highlighting notable changes in the field and the author’s work, this new edition includes an updated preface, introduction, and key journal articles that frame and contextualize this seminal work.




Encyclopedia of Mathematics Education


Book Description

The Encyclopedia of Mathematics Education is a comprehensive reference text, covering every topic in the field with entries ranging from short descriptions to much longer pieces where the topic warrants more elaboration. The entries provide access to theories and to research in the area and refer to the leading publications for further reading. The Encyclopedia is aimed at graduate students, researchers, curriculum developers, policy makers, and others with interests in the field of mathematics education. It is planned to be 700 pages in length in its hard copy form but the text will subsequently be up-dated and developed on-line in a way that retains the integrity of the ideas, the responsibility for which will be in the hands of the Editor-in-Chief and the Editorial Board. This second edition will include additional entries on: new ideas in the politics of mathematics education, working with minority students, mathematics and art, other cross-disciplinary studies, studies in emotions and mathematics, new frameworks for analysis of mathematics classrooms, and using simulations in mathematics teacher education. Existing entries will be revised and new entries written. Members of the international mathematics education research community will be invited to propose new entries. Editorial Board: Bharath Sriraman Melony Graven Yoshinori Shimizu Ruhama Even Michele Artigue Eva Jablonka Wish to Become an Author? Springer's Encyclopedia of Mathematics Education's first edition was published in 2014. The Encyclopedia is a "living" project and will continue to accept articles online as part of an eventual second edition. Articles will be peer-reviewed in a timely manner and, if found acceptable, will be immediately published online. Suggested articles are, of course, welcome. Feel encouraged to think about additional topics that we overlooked the first time around, and to suggest colleagues (including yourself!) who will want to write them. Interested new authors should contact the editor in chief, Stephen Lerman, at [email protected], for more specific instructions.




The Nature of Mathematical Knowledge


Book Description

This book argues against the view that mathematical knowledge is a priori, contending that mathematics is an empirical science and develops historically, just as natural sciences do. Kitcher presents a complete, systematic, and richly detailed account of the nature of mathematical knowledge and its historical development, focusing on such neglected issues as how and why mathematical language changes, why certain questions assume overriding importance, and how standards of proof are modified.