FORTRAN Program for Generating a Two-dimensional Orthogonal Mesh Between Two Arbitrary Boundaries


Book Description

A FORTRAN 4 program is presented which computes and plots coordinates for a two-dimensional orthogonal mesh in the region between the walls of a flow channel. The program is designed for a channel containing a body about which flow passes and which spans the channel from one wall to the other. However, the condition that the channel contain an immersed body can be easily removed from the program. Input to the program consists of spline points of the channel walls and the body geometry. Output includes printed and plotted coordinates of the generated orthogonal mesh and angles of the mesh with the horizontal plane.




A Computational Differential Geometry Approach to Grid Generation


Book Description

The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. In an updated and expanded Second Edition, this monograph gives a detailed treatment based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces.




NASA Tech Brief


Book Description




Cumulative Index to NASA Tech Briefs


Book Description




Computational Techniques for Fluid Dynamics


Book Description

As indicated in Vol. 1, the purpose of this two-volume textbook is to pro vide students of engineering, science and applied mathematics with the spe cific techniques, and the framework to develop skill in using them, that have proven effective in the various branches of computational fluid dy namics Volume 1 describes both fundamental and general techniques that are relevant to all branches of fluid flow. This volume contains specific tech niques applicable to the different categories of engineering flow behaviour, many of which are also appropriate to convective heat transfer. The contents of Vol. 2 are suitable for specialised graduate courses in the engineering computational fluid dynamics (CFD) area and are also aimed at the established research worker or practitioner who has already gained some fundamental CFD background. It is assumed that the reader is famil iar with the contents of Vol. 1. The contents of Vol. 2 are arranged in the following way: Chapter 11 de velops and discusses the equations governing fluid flow and introduces the simpler flow categories for which specific computational techniques are considered in Chaps. 14-18. Most practical problems involve computational domain boundaries that do not conveniently coincide with coordinate lines. Consequently, in Chap. 12 the governing equations are expressed in generalised curvilinear coordinates for use in arbitrary computational domains. The corresponding problem of generating an interior grid is considered in Chap. 13.













NASA Technical Note


Book Description