FOUNDATIONS FOR MICROWAVE ENGINEERING, 2ND ED


Book Description

About The Book: The book covers the major topics of microwave engineering. Its presentation defines the accepted standard for both advanced undergraduate and graduate level courses on microwave engineering. It is an essential reference book for the practicing microwave engineer




Foundations for Microwave Circuits


Book Description

While many articles have been written on microwave devices, a great majority of them are prepared for specialists dealing in specific aspects of microwave engineering. At the same time, material at a fundamental level in tutorial form is extremely limited, especially for stu dents who need to acquire basic knowledge in the field. Individuals seeking to gain a prelim inary understanding of microwave circuits are usually relegated with little success to the end less search from one reference source to another. For non-experts, sequential derivations of basic relations are rarely available and extremely difficult to locate. The purpose of this volume is to collect in one place the essential fundamental principles for a group of microwave devices. The chosen devices are those which form the basic modules found in practical microwave systems. Thus, these devices provide the crucial build ing blocks in common microwave systems, and their inherent characteristics are also the basis of some of the fundamental concepts in more complex devices. The material is presented in a continuous, self-contained manner. With the appropriate background, readers should be able to follow and understand the contents without the need for additional references.




Microwave Engineering


Book Description

Pozar's new edition of Microwave Engineering includes more material on active circuits, noise, nonlinear effects, and wireless systems. Chapters on noise and nonlinear distortion, and active devices have been added along with the coverage of noise and more material on intermodulation distortion and related nonlinear effects. On active devices, there's more updated material on bipolar junction and field effect transistors. New and updated material on wireless communications systems, including link budget, link margin, digital modulation methods, and bit error rates is also part of the new edition. Other new material includes a section on transients on transmission lines, the theory of power waves, a discussion of higher order modes and frequency effects for microstrip line, and a discussion of how to determine unloaded.




Planar Microwave Engineering


Book Description

Modern wireless communications hardware is underpinned by RF and microwave design techniques. This insightful book contains a wealth of circuit layouts, design tips, and practical measurement techniques for building and testing practical gigahertz systems. The book covers everything you need to know to design, build, and test a high-frequency circuit. Microstrip components are discussed, including tricks for extracting good performance from cheap materials. Connectors and cables are also described, as are discrete passive components, antennas, low-noise amplifiers, oscillators, and frequency synthesizers. Practical measurement techniques are presented in detail, including the use of network analyzers, sampling oscilloscopes, spectrum analyzers, and noise figure meters. Throughout the focus is practical, and many worked examples and design projects are included. There is also a CD-ROM that contains a variety of design and analysis programs. The book is packed with indispensable information for students taking courses on RF or microwave circuits and for practising engineers.




Foundations for Microstrip Circuit Design


Book Description

Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.







Foundations For Radio Frequency Engineering


Book Description

The book provides a comprehensive coverage of the fundamental topics in microwave engineering, antennas and wave propagation, and electromagnetic compatibility, including electromagnetic boundary value problems, waveguide theory, microwave resonators, antennas and wave propagation, microwave circuits, principles of electromagnetic compatibility designs, information theory and systems.Deals systematically with fundamental problems in radio frequency engineering, this important volume provides an updated treatment of radio frequency theory and techniques.The book can be used as a one-semester course for senior and first-year graduate students or as a reference for radio frequency engineers and applied physicists.




Asymmetric Passive Components in Microwave Integrated Circuits


Book Description

This book examines the new and important technology of asymmetric passive components for miniaturized microwave passive circuits. The asymmetric design methods and ideas set forth by the author are groundbreaking and have not been treated in previous works. Readers discover how these design methods reduce the circuit size of microwave integrated circuits and are also critical to reducing the cost of equipment such as cellular phones, radars, antennas, automobiles, and robots. An introductory chapter on the history of asymmetric passive components, which began with asymmetric ring hybrids first described by the author, sets the background for the book. It lays a solid foundation with a chapter examining microwave circuit parameters such as scattering, ABCD, impedance, admittance, and image. A valuable feature of this chapter is a conversion table between the various circuit matrices characterizing two-port networks terminated in arbitrary impedances. The correct conversion has also never been treated in previous works. Next, the author sets forth a thorough treatment of asymmetric passive component design, which covers the basic and indispensable elements for integration with other active or passive devices, including: * Asymmetric ring hybrids * Asymmetric branch-line hybrids * Asymmetric three-port power dividers and N-way power dividers * Asymmetric ring hybrid phase shifters and attenuators * Asymmetric ring filters and asymmetric impedance transformers With its focus on the principles of circuit element design, this is a must-have graduate-level textbook for students in microwave engineering, as well as a reference for design engineers who want to learn the new and powerful design method for asymmetric passive components.




Foundations for Microstrip Circuit Design


Book Description

Provides an explanation of the design of microstrip components and circuits for microwave, millimetre-wave and high-speed digital sub-systems. Design formulae and procedures are outlined and emphasis is placed on techniques suitable for fast computer-aided engineering.




RF and Microwave Engineering


Book Description

This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice. Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the reader can directly transfer the methods within the context of their own work. At the end of each chapter a list of problems is given in order to deepen the reader’s understanding of the chapter material and practice the new competences. Solutions are available on the author’s website. Key Features: Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passive circuits, antennas Uses various examples of modern RF tools that show how the methods can be applied productively in RF engineering practice Incorporates various design examples using circuit and electromagnetic (EM) simulation software Discusses the propagation of waves: their representation, their effects, and their utilization in passive circuits and antenna structures Provides a list of problems at the end of each chapter Includes an accompanying website containing solutions to the problems (http:\\www.fh-dortmund.de\gustrau_rf_textbook) This will be an invaluable textbook for bachelor and masters students on electrical engineering courses (microwave engineering, basic circuit theory and electromagnetic fields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area will also find this book of interest.