Foundations of Complex Systems


Book Description

Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, how natural complexity acts as a source of inspiration for progress at the fundamental level.




Foundations of Complex-system Theories


Book Description

Analyzes approaches to the study of complexity in the physical, biological, and social sciences.




Designing Complex Systems


Book Description

Without standardized construction elements such as nuts, bolts, bearings, beams, resistors and the like, the design of physical equipment is hopelessly inefficient, and engineers are continually bogged down with re-designing these elements over and over again. Emphasizing a top-down approach, this volume considers the purpose and basic features of design and how the concept of value can provide a quantitative measure of that wider interaction of the engineered object with its environment. This work also develops the domain in which functional design takes place and explores how the system concept can be embedded in that domain. It proposes a number of functional design elements and develops them in considerable detail, outlining how they can be applied as part of a coherent design framework. For greater understanding of the discussed concepts, numerous examples and analogies are included.




Foundations Of Complex Systems: Emergence, Information And Prediction (2nd Edition)


Book Description

This book provides a self-contained presentation of the physical and mathematical laws governing complex systems. Complex systems arising in natural, engineering, environmental, life and social sciences are approached from a unifying point of view using an array of methodologies such as microscopic and macroscopic level formulations, deterministic and probabilistic tools, modeling and simulation. The book can be used as a textbook by graduate students, researchers and teachers in science, as well as non-experts who wish to have an overview of one of the most open, markedly interdisciplinary and fast-growing branches of present-day science.




What Is a Complex System?


Book Description

A clear, concise introduction to the quickly growing field of complexity science that explains its conceptual and mathematical foundations What is a complex system? Although "complexity science" is used to understand phenomena as diverse as the behavior of honeybees, the economic markets, the human brain, and the climate, there is no agreement about its foundations. In this introduction for students, academics, and general readers, philosopher of science James Ladyman and physicist Karoline Wiesner develop an account of complexity that brings the different concepts and mathematical measures applied to complex systems into a single framework. They introduce the different features of complex systems, discuss different conceptions of complexity, and develop their own account. They explain why complexity science is so important in today's world.




Dynamics Of Complex Systems


Book Description

This book aims to develop models and modeling techniques that are useful when applied to all complex systems. It adopts both analytic tools and computer simulation. The book is intended for students and researchers with a variety of backgrounds.




Philosophy of Complex Systems


Book Description

The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on.Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of complex nonlinear dynamical systems, especially in recent years.-Comprehensive coverage of all main theories in the philosophy of Complex Systems -Clearly written expositions of fundamental ideas and concepts -Definitive discussions by leading researchers in the field -Summaries of leading-edge research in related fields are also included




An Introduction to Complex Systems


Book Description

This book explores the interdisciplinary field of complex systems theory. By the end of the book, readers will be able to understand terminology that is used in complex systems and how they are related to one another; see the patterns of complex systems in practical examples; map current topics, in a variety of fields, to complexity theory; and be able to read more advanced literature in the field. The book begins with basic systems concepts and moves on to how these simple rules can lead to complex behavior. The author then introduces non-linear systems, followed by pattern formation, and networks and information flow in systems. Later chapters cover the thermodynamics of complex systems, dynamical patterns that arise in networks, and how game theory can serve as a framework for decision making. The text is interspersed with both philosophical and quantitative arguments, and each chapter ends with questions and prompts that help readers make more connections. “The text provides a useful overview of complex systems, with enough detail to allow a reader unfamiliar with the topic to understand the basics. The book stands out for its comprehensiveness and approachability. It will be particularly useful as a text for introductory physics courses. Tranquillo’s strength is in delivering a vast amount of information in a succinct manner.... A reader can find information quickly and efficiently—that is, in my opinion, the book’s greatest value.” (Stefani Crabtree, Physics Today)




Strategy for Managing Complex Systems


Book Description

"Malik demonstrates that management and management theory have strong foundations in systems science, and most specifically in a certain type of cybernetics of truly complex systems, of organismic, self-organizing, and evolving systems. This book provides the basics on how to create robust, functional, and sustainably viable systems. One of the reasons why it has become a classic on management cybernetics, now in its 11th edition, is that the strategies and heuristic principles of complexity management are still relevant - now more than ever."--Back cover.




Viability and Resilience of Complex Systems


Book Description

One common characteristics of a complex system is its ability to withstand major disturbances and the capacity to rebuild itself. Understanding how such systems demonstrate resilience by absorbing or recovering from major external perturbations requires both quantitative foundations and a multidisciplinary view on the topic. This book demonstrates how new methods can be used to identify the actions favouring the recovery from perturbations. Examples discussed include bacterial biofilms resisting detachment, grassland savannahs recovering from fire, the dynamics of language competition and Internet social networking sites overcoming vandalism. The reader is taken through an introduction to the idea of resilience and viability and shown the mathematical basis of the techniques used to analyse systems. The idea of individual or agent-based modelling of complex systems is introduced and related to analytically tractable approximations of such models. A set of case studies illustrates the use of the techniques in real applications, and the final section describes how one can use new and elaborate software tools for carrying out the necessary calculations. The book is intended for a general scientific audience of readers from the natural and social sciences, yet requires some mathematics to gain a full understanding of the more theoretical chapters. It is an essential point of reference for those interested in the practical application of the concepts of resilience and viability