Foundations of Computer Vision


Book Description

An accessible, authoritative, and up-to-date computer vision textbook offering a comprehensive introduction to the foundations of the field that incorporates the latest deep learning advances. Machine learning has revolutionized computer vision, but the methods of today have deep roots in the history of the field. Providing a much-needed modern treatment, this accessible and up-to-date textbook comprehensively introduces the foundations of computer vision while incorporating the latest deep learning advances. Taking a holistic approach that goes beyond machine learning, it addresses fundamental issues in the task of vision and the relationship of machine vision to human perception. Foundations of Computer Vision covers topics not standard in other texts, including transformers, diffusion models, statistical image models, issues of fairness and ethics, and the research process. To emphasize intuitive learning, concepts are presented in short, lucid chapters alongside extensive illustrations, questions, and examples. Written by leaders in the field and honed by a decade of classroom experience, this engaging and highly teachable book offers an essential next-generation view of computer vision. Up-to-date treatment integrates classic computer vision and deep learning Accessible approach emphasizes fundamentals and assumes little background knowledge Student-friendly presentation features extensive examples and images Proven in the classroom Instructor resources include slides, solutions, and source code




Foundations of Computer Vision


Book Description

This book introduces the fundamentals of computer vision (CV), with a focus on extracting useful information from digital images and videos. Including a wealth of methods used in detecting and classifying image objects and their shapes, it is the first book to apply a trio of tools (computational geometry, topology and algorithms) in solving CV problems, shape tracking in image object recognition and detecting the repetition of shapes in single images and video frames. Computational geometry provides a visualization of topological structures such as neighborhoods of points embedded in images, while image topology supplies us with structures useful in the analysis and classification of image regions. Algorithms provide a practical, step-by-step means of viewing image structures. The implementations of CV methods in Matlab and Mathematica, classification of chapter problems with the symbols (easily solved) and (challenging) and its extensive glossary of key words, examples and connections with the fabric of CV make the book an invaluable resource for advanced undergraduate and first year graduate students in Engineering, Computer Science or Applied Mathematics. It offers insights into the design of CV experiments, inclusion of image processing methods in CV projects, as well as the reconstruction and interpretation of recorded natural scenes.




Fundamentals of Computer Vision


Book Description

Computer vision has widespread and growing application including robotics, autonomous vehicles, medical imaging and diagnosis, surveillance, video analysis, and even tracking for sports analysis. This book equips the reader with crucial mathematical and algorithmic tools to develop a thorough understanding of the underlying components of any complete computer vision system and to design such systems. These components include identifying local features such as corners or edges in the presence of noise, edge preserving smoothing, connected component labeling, stereopsis, thresholding, clustering, segmentation, and describing and matching both shapes and scenes. The extensive examples include photographs of faces, cartoons, animal footprints, and angiograms, and each chapter concludes with homework exercises and suggested projects. Intended for advanced undergraduate and beginning graduate students, the text will also be of use to practitioners and researchers in a range of applications.




Computer Vision


Book Description

A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.




Theoretical Foundations of Computer Vision


Book Description

Computer Vision is a rapidly growing field of research investigating computational and algorithmic issues associated with image acquisition, processing, and understanding. It serves tasks like manipulation, recognition, mobility, and communication in diverse application areas such as manufacturing, robotics, medicine, security and virtual reality. This volume contains a selection of papers devoted to theoretical foundations of computer vision covering a broad range of fields, e.g. motion analysis, discrete geometry, computational aspects of vision processes, models, morphology, invariance, image compression, 3D reconstruction of shape. Several issues have been identified to be of essential interest to the community: non-linear operators; the transition between continuous to discrete representations; a new calculus of non-orthogonal partially dependent systems.




Structured Learning and Prediction in Computer Vision


Book Description

Structured Learning and Prediction in Computer Vision introduces the reader to the most popular classes of structured models in computer vision.




Concise Computer Vision


Book Description

This textbook provides an accessible general introduction to the essential topics in computer vision. Classroom-tested programming exercises and review questions are also supplied at the end of each chapter. Features: provides an introduction to the basic notation and mathematical concepts for describing an image and the key concepts for mapping an image into an image; explains the topologic and geometric basics for analysing image regions and distributions of image values and discusses identifying patterns in an image; introduces optic flow for representing dense motion and various topics in sparse motion analysis; describes special approaches for image binarization and segmentation of still images or video frames; examines the basic components of a computer vision system; reviews different techniques for vision-based 3D shape reconstruction; includes a discussion of stereo matchers and the phase-congruency model for image features; presents an introduction into classification and learning.




Computer Vision


Book Description

Computer Vision: Principles, Algorithms, Applications, Learning (previously entitled Computer and Machine Vision) clearly and systematically presents the basic methodology of computer vision, covering the essential elements of the theory while emphasizing algorithmic and practical design constraints. This fully revised fifth edition has brought in more of the concepts and applications of computer vision, making it a very comprehensive and up-to-date text suitable for undergraduate and graduate students, researchers and R&D engineers working in this vibrant subject. See an interview with the author explaining his approach to teaching and learning computer vision - http://scitechconnect.elsevier.com/computer-vision/ Three new chapters on Machine Learning emphasise the way the subject has been developing; Two chapters cover Basic Classification Concepts and Probabilistic Models; and the The third covers the principles of Deep Learning Networks and shows their impact on computer vision, reflected in a new chapter Face Detection and Recognition. A new chapter on Object Segmentation and Shape Models reflects the methodology of machine learning and gives practical demonstrations of its application. In-depth discussions have been included on geometric transformations, the EM algorithm, boosting, semantic segmentation, face frontalisation, RNNs and other key topics. Examples and applications—including the location of biscuits, foreign bodies, faces, eyes, road lanes, surveillance, vehicles and pedestrians—give the ‘ins and outs’ of developing real-world vision systems, showing the realities of practical implementation. Necessary mathematics and essential theory are made approachable by careful explanations and well-illustrated examples. The ‘recent developments’ sections included in each chapter aim to bring students and practitioners up to date with this fast-moving subject. Tailored programming examples—code, methods, illustrations, tasks, hints and solutions (mainly involving MATLAB and C++)




Modern Computer Vision with PyTorch


Book Description

Get to grips with deep learning techniques for building image processing applications using PyTorch with the help of code notebooks and test questions Key FeaturesImplement solutions to 50 real-world computer vision applications using PyTorchUnderstand the theory and working mechanisms of neural network architectures and their implementationDiscover best practices using a custom library created especially for this bookBook Description Deep learning is the driving force behind many recent advances in various computer vision (CV) applications. This book takes a hands-on approach to help you to solve over 50 CV problems using PyTorch1.x on real-world datasets. You’ll start by building a neural network (NN) from scratch using NumPy and PyTorch and discover best practices for tweaking its hyperparameters. You’ll then perform image classification using convolutional neural networks and transfer learning and understand how they work. As you progress, you’ll implement multiple use cases of 2D and 3D multi-object detection, segmentation, human-pose-estimation by learning about the R-CNN family, SSD, YOLO, U-Net architectures, and the Detectron2 platform. The book will also guide you in performing facial expression swapping, generating new faces, and manipulating facial expressions as you explore autoencoders and modern generative adversarial networks. You’ll learn how to combine CV with NLP techniques, such as LSTM and transformer, and RL techniques, such as Deep Q-learning, to implement OCR, image captioning, object detection, and a self-driving car agent. Finally, you'll move your NN model to production on the AWS Cloud. By the end of this book, you’ll be able to leverage modern NN architectures to solve over 50 real-world CV problems confidently. What you will learnTrain a NN from scratch with NumPy and PyTorchImplement 2D and 3D multi-object detection and segmentationGenerate digits and DeepFakes with autoencoders and advanced GANsManipulate images using CycleGAN, Pix2PixGAN, StyleGAN2, and SRGANCombine CV with NLP to perform OCR, image captioning, and object detectionCombine CV with reinforcement learning to build agents that play pong and self-drive a carDeploy a deep learning model on the AWS server using FastAPI and DockerImplement over 35 NN architectures and common OpenCV utilitiesWho this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who are looking to get well-versed with computer vision techniques using deep learning and PyTorch. If you are just getting started with neural networks, you’ll find the use cases accompanied by notebooks in GitHub present in this book useful. Basic knowledge of the Python programming language and machine learning is all you need to get started with this book.




Recent Advances in Computer Vision


Book Description

This book presents a collection of high-quality research by leading experts in computer vision and its applications. Each of the 16 chapters can be read independently and discusses the principles of a specific topic, reviews up-to-date techniques, presents outcomes, and highlights the challenges and future directions. As such the book explores the latest trends in fashion creative processes, facial features detection, visual odometry, transfer learning, face recognition, feature description, plankton and scene classification, video face alignment, video searching, and object segmentation. It is intended for postgraduate students, researchers, scholars and developers who are interested in computer vision and connected research disciplines, and is also suitable for senior undergraduate students who are taking advanced courses in related topics. However, it is also provides a valuable reference resource for practitioners from industry who want to keep abreast of recent developments in this dynamic, exciting and profitable research field.