Foundations of Discrete Harmonic Analysis


Book Description

This book provides an introduction to discrete harmonic analysis (DHA) with a view towards applications to digital signal processing. In a nutshell, DHA is used to determine the time-frequency structure of a digitized signal, providing a representation of the signal as a sum of spectral components that can then be analyzed. The main methods of DHA are discrete Fourier transform and other discrete orthogonal transforms such as the Walsh and Haar transforms. Fast algorithms are used to process signals in real time, while additional options are provided by spline harmonic analysis. These topics are carefully covered in the book. With only modest prerequisites, some of which are recalled at the beginning, a profound mathematical theory is built almost from scratch. The 150 exercises included form an integral part of the text. Based decades of teaching experience, this book provides a basis for lecture courses starting at the upper undergraduate level, and will also prove a valuable resource for mathematicians and engineers interested in digital signal processing.




Foundations of Discrete Harmonic Analysis


Book Description

This book provides an introduction to discrete harmonic analysis (DHA) with a view towards applications to digital signal processing. In a nutshell, DHA is used to determine the time-frequency structure of a digitized signal, providing a representation of the signal as a sum of spectral components that can then be analyzed. The main methods of DHA are discrete Fourier transform and other discrete orthogonal transforms such as the Walsh and Haar transforms. Fast algorithms are used to process signals in real time, while additional options are provided by spline harmonic analysis. These topics are carefully covered in the book. With only modest prerequisites, some of which are recalled at the beginning, a profound mathematical theory is built almost from scratch. The 150 exercises included form an integral part of the text. Based decades of teaching experience, this book provides a basis for lecture courses starting at the upper undergraduate level, and will also prove a valuable resource for mathematicians and engineers interested in digital signal processing.




Discrete Harmonic Analysis


Book Description

A self-contained introduction to discrete harmonic analysis with an emphasis on the Discrete and Fast Fourier Transforms.




Harmonic Analysis and Discrete Potential Theory


Book Description

This book collects the Proceedings of a Congress held in Frascati (Rome) in the period July 1 -July 10, 1991, on the subject of harmonic analysis and discrete potential theory, and related topics. The Congress was made possible by the financial support of the Italian National Research Council ("Gruppo GNAFA"), the Ministry of University ("Gruppo Analisi Funzionale" of the University of Milano), the University of Rome "Tor Vergata", and was also patronized by the Centro "Vito Volterra" of the University of Rome "Tor Vergata". Financial support for publishing these Proceedings was provided by the University of Rome "Tor Vergata", and by a generous contribution of the Centro "Vito Volterra". I am happy of this opportunity to acknowledge the generous support of all these Institutions, and to express my gratitude, and that of all the participants. A number of distinguished mathematicians took part in the Congress. Here is the list of participants: M. Babillot, F. Choucroun, Th. Coulhon, L. Elie, F. Ledrappier, N. Th. Varopoulos (Paris); L. Gallardo (Brest); Ph. Bougerol, B. Roynette (Nancy); O. Gebuhrer (Strasbourg); G. Ahumada-Bustamante (Mulhouse); A. Valette (Neuchatel); P. Gerl (Salzburg); W. Hansen, H. Leptin (Bielefeld); M. Bozejko, A. Hulanicki, T. Pytlik (Wroclaw); C. Thomassen (Lyngby); P. Sjogren (Goteborg); V. Kaimanovich (Leningrad); A. Nevo (Jerusalem); T. Steger (Chicago); S. Sawyer, M. Taibleson, G. Weiss (St. Louis); J. Cohen, S.S ali ani (Maryland); D. Voiculescu (Berkeley); A. Zemanian (Stony Brook); S. Northshield (Plattsburgh); J. Taylor (Montreal); J




Discrete Tomography


Book Description

Goals of the Book Overthelast thirty yearsthere has been arevolutionindiagnostic radiology as a result oftheemergenceofcomputerized tomography (CT), which is the process of obtaining the density distribution within the human body from multiple x-ray projections. Since an enormous variety of possible density values may occur in the body, a large number of projections are necessary to ensure the accurate reconstruction oftheir distribution. There are other situations in which we desire to reconstruct an object from its projections, but in which we know that the object to be recon structed has only a small number of possible values. For example, a large fraction of objects scanned in industrial CT (for the purpose of nonde structive testing or reverse engineering) are made of a single material and so the ideal reconstruction should contain only two values: zero for air and the value associated with the material composing the object. Similar as sumptions may even be made for some specific medical applications; for example, in angiography ofthe heart chambers the value is either zero (in dicating the absence of dye) or the value associated with the dye in the chamber. Another example arises in the electron microscopy of biological macromolecules, where we may assume that the object to be reconstructed is composed of ice, protein, and RNA. One can also apply electron mi croscopy to determine the presenceor absence ofatoms in crystallinestruc tures, which is again a two-valued situation.




Unitary Representations and Harmonic Analysis


Book Description

The principal aim of this book is to give an introduction to harmonic analysis and the theory of unitary representations of Lie groups. The second edition has been brought up to date with a number of textual changes in each of the five chapters, a new appendix on Fatou's theorem has been added in connection with the limits of discrete series, and the bibliography has been tripled in length.




Foundations of Time-Frequency Analysis


Book Description

Time-frequency analysis is a modern branch of harmonic analysis. It com prises all those parts of mathematics and its applications that use the struc ture of translations and modulations (or time-frequency shifts) for the anal ysis of functions and operators. Time-frequency analysis is a form of local Fourier analysis that treats time and frequency simultaneously and sym metrically. My goal is a systematic exposition of the foundations of time-frequency analysis, whence the title of the book. The topics range from the elemen tary theory of the short-time Fourier transform and classical results about the Wigner distribution via the recent theory of Gabor frames to quantita tive methods in time-frequency analysis and the theory of pseudodifferential operators. This book is motivated by applications in signal analysis and quantum mechanics, but it is not about these applications. The main ori entation is toward the detailed mathematical investigation of the rich and elegant structures underlying time-frequency analysis. Time-frequency analysis originates in the early development of quantum mechanics by H. Weyl, E. Wigner, and J. von Neumann around 1930, and in the theoretical foundation of information theory and signal analysis by D.




Frames and Other Bases in Abstract and Function Spaces


Book Description

The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as: The advanced development of frames, including Sigma-Delta quantization for fusion frames, localization of frames, and frame conditioning, as well as applications to distributed sensor networks, Galerkin-like representation of operators, scaling on graphs, and dynamical sampling. A systematic approach to shearlets with applications to wavefront sets and function spaces. Prolate and generalized prolate functions, spherical Gauss-Laguerre basis functions, and radial basis functions. Kernel methods, wavelets, and frames on compact and non-compact manifolds.




A Course in Abstract Harmonic Analysis


Book Description

A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul




Harmonic Analysis


Book Description

In the last 200 years, harmonic analysis has been one of the most influential bodies of mathematical ideas, having been exceptionally significant both in its theoretical implications and in its enormous range of applicability throughout mathematics, science, and engineering. This rich and engaging text is an introduction to serious analysis and computational harmonic analysis through the lens of Fourier and wavelet analysis. Through an accessible combination of rigorous proof, inviting motivation, and numerous applications (plus over 300 exercises), the authors convey the remarkable beauty and applicability of the ideas that have grown from Fourier theory. This book is published in cooperation with IAS/Park City Mathematics Institute.