High-Energy-Density Physics


Book Description

The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This title surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course, an introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems. This second edition includes pedagogic improvements to the presentation throughout and additional material on equations of state, heat waves, and ionization fronts, as well as problem sets accompanied by solutions.




High-Energy-Density Physics


Book Description

This book has two goals. One goal is to provide a means for those new to high-energy-density physics to gain a broad foundation from one text. The second goal is to provide a useful working reference for those in the ?eld. This book has at least four possible applications in an academic c- text. It can be used for training in high-energy-density physics, in support of the growing number of university and laboratory research groups working in this area. It also can be used by schools with an emphasis on ultrafast lasers, to provide some introduction to issues present in all laser–target - perimentswithhigh-powerlasers,andwiththoroughcoverageofthematerial in Chap. 11 on relativistic systems. In addition, it could be used by physics, applied physics, or engineering departments to provide in a single course an introduction to the basics of ?uid mechanics and radiative transfer, with d- matic applications. Finally, it could be used by astrophysics departments for a similar purpose, with the parallel bene?t of training the students in the similarities and di?erences between laboratory and astrophysical systems. The notation in this text is deliberately sparse and when possible a given symbol has only one meaning. A de?nition of the symbols used is given in Appendix A. In various cases, additional subscripts are added to distinguish among cases of the same quantity, as for example in the use of ? and ? 1 2 to distinguish the mass density in two di?erent regions.




Foundations of High-Energy-Density Physics


Book Description

A valuable and complete resource that brings together many of the branches of physics needed in high-energy-density physics. Targeted at research scientists and graduate students in physics and astrophysics, this book begins with basic concepts and develops a detailed explanation of the physics of hydrodynamics and energy transport in plasma.




Frontiers in High Energy Density Physics


Book Description

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.




Foundations of High-Energy Astrophysics


Book Description

Written by one of today’s most highly respected astrophysicists, Foundations of High-Energy Astrophysics is an introduction to the mathematical and physical techniques used in the study of high-energy astrophysics. Here, Mario Vietri approaches the basics of high-energy astrophysics with an emphasis on underlying physical processes as opposed to a more mathematical approach. Alongside more traditional topics, Vietri presents new subjects increasingly considered crucial to understanding high-energy astrophysical sources, including the electrodynamics of cosmic sources, new developments in the theory of standard accretion disks, and the physics of coronae, thick disks, and accretion onto magnetized objects. The most thorough and engaging survey of high-energy astrophysics available today, Foundations of High-Energy Astrophysics introduces the main physical processes relevant to the field in a rigorous yet accessible way, while paying careful attention to observational issues. Vietri’s book will quickly become a classic text for students and active researchers in astronomy and astrophysics. Those in adjoining fields will also find it a valuable addition to their personal libraries.




The Physics of Inertial Fusion


Book Description

This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modelling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.




Physical Foundations of Cosmology


Book Description

Inflationary cosmology has been developed over the last twenty years to remedy serious shortcomings in the standard hot big bang model of the universe. This textbook, first published in 2005, explains the basis of modern cosmology and shows where the theoretical results come from. The book is divided into two parts; the first deals with the homogeneous and isotropic model of the Universe, the second part discusses how inhomogeneities can explain its structure. Established material such as the inflation and quantum cosmological perturbation are presented in great detail, however the reader is brought to the frontiers of current cosmological research by the discussion of more speculative ideas. An ideal textbook for both advanced students of physics and astrophysics, all of the necessary background material is included in every chapter and no prior knowledge of general relativity and quantum field theory is assumed.




Quantum Chromodynamics


Book Description

This is a new text on Quantum Chromodynamics, the theory of the strong force between quarks, the fundamental building blocks of nuclear matter. Although the focus is on experiments, the text also includes anextensive theoretical introduction to the field as well as many exercises with solutions explained in detail.




Physics of High-Density Z-Pinch Plasmas


Book Description

A "z pinch" is a deceptively simple plasma configuration in which a longitudinal current produces a magnetic field that confines the plasma. Z-pinch research is currently one of the fastest growing areas of plasma physics, with revived interest in z-pinch controlled fusion reactors along with investigations of new z-pinch applications, such as very high power x-ray sources, high-energy neutrons sources, and ultra-high magnetic fields generators. This book provides a comprehensive review of the physics of dense z pinches and includes many recent experimental results.




Foundations of Data Science


Book Description

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.